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Chapter 1
Introduction

Understanding the self-consistent coupling and flow of energy, momentum, matter,
and electromagnetic fields is necessary for every aspect of solar, space, and
astrophysics. Transport of energy from the center of Sun or a star to the photosphere
determines its stellar evolution, for example. The transport of convective energy and
its translation to magnetic energy and the subsequent transport of magnetic energy
into the solar corona is thought to be responsible for the unexpected heating of the
solar corona to its very high temperatures. The transport of mass, momentum, and
energy is necessary to understand the physics of expanding flows, such as the solar
wind and stellar winds, the interstellar medium, and almost every conceivable flow
found in a solar, space, and astrophysics context.

To illustrate the fascinating complexity of transport processes within a space
physics setting, consider the interaction of the solar wind with the local interstellar
medium. The transport of matter from the solar atmosphere is manifest in the
supersonic solar wind that expands non-adiabatically past the Earth and planets to
eventually interact with the local interstellar medium at some 120 Astronomical
Units (AU). Over this vast distance, the solar wind begins in a highly collisional
state deep in the atmosphere of the Sun, becoming essentially collisionless as it
expands away from the corona, and is then mediated weakly beyond the planets
by charge-exchange processes with neutral interstellar hydrogen that flows into
the heliosphere.1 In the case of the large-scale heliosphere, despite the coupling
of plasma and neutral H through a collisional process, the associated creation of
so-called pickup ions introduces an important new collisionless transport element
into the system as well. Specifically, in the supersonic solar wind, neutral H drifts
through the supersonic solar wind, which has a radially expanding velocity of �350
to �700 km/s in an opposite direction with a speed of �20 km/s. Charge exchange

1The large scale structure of the bubble of solar material carved out by the solar wind expanding
into the partially ionized local interstellar medium is called the heliosphere. See the review by
Zank (1999) for a discussion of the large-scale heliosphere and its coupling through collisional
charge-exchange processes to the local interstellar medium.

G.P. Zank, Transport Processes in Space Physics and Astrophysics, Lecture Notes
in Physics 877, DOI 10.1007/978-1-4614-8480-6__1,
© Springer Science+Business Media New York 2014
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2 1 Introduction

between a solar wind proton and an interstellar H atom creates a new ion (the
“pickup ion) which responds immediately to the motional electric field of the solar
wind, accelerating the pickup ion to co-move with the solar wind. The newly created
pickup ions have an energy corresponding to that of the solar wind speed in which
they were “picked up, i.e., of the order of about 1 keV, and form an unstable ring-
beam distribution. The ring-beam instability excites Alfvén waves that scatter the
initial unstable pickup ion distribution to a more stable bispherical distribution,
which is well approximated by a simple shell distribution that co-moves with the
background solar wind. The pickup ions come to dominate the solar wind thermally
in the distant heliosphere, although the ram pressure carried by the relatively cool
solar wind remains the energetically dominant process. Furthermore, the excited
Alfvén waves act as a new source of turbulence in the outer heliosphere, and
therefore modify the transport of magnetic turbulence in the outer heliosphere. It
transpires that the driving and transport and dissipation of low frequency magne-
tohydrodynamic turbulence in the heliosphere is necessary to explain the heating
of the solar wind and the observed temperature profile. This in turn affects the
modulation, i.e., the transport, of galactic and anomalous cosmic rays. In summary,
the apparently simple coupling through collisional charge exchange of neutral inter-
stellar hydrogen and the solar wind plasma yields an enormously complicated set of
transport processes, both collisional and collisionless, including thermal, suprather-
mal (pickup ions), and superthermal (cosmic rays) particles and low-frequency
magnetic fields. The purpose behind this book is to develop some of the theoretical
techniques necessary to understand the underlying transport modeling of various
processes in systems such as the outer heliosphere-local interstellar medium system.

The study of transport processes in gases by Maxwell and Boltzmann laid the
foundations for using kinetic processes to understand and develop a macroscopic
description of non-equilibrium phenomena. Within the context of a collisional gas,
a fairly systematic and complete theory of transport in dilute or moderately dense
neutral gases was completed, predicting transport coefficients for diffusion, heat
conduction, and viscosity that appear to be in reasonable accord with observations.
Nonetheless, this remains an active field of research with numerous applications.
Transport phenomena in low density gases are based on the idea that frequent
collisions, essentially binary, between individual elements of the gas (molecules or
atoms) drive irreversibility and dissipation because of the subsequent randomization
of individual particle trajectories–the essence of “molecular chaos. The random
collisions of the particles are balanced by the free streaming of the individual
particles in a macroscopic inhomogeneous medium subject to the possible presence
of an external force field such as gravity. The balancing of collisions, streaming, and
the response to an external force, results in the system of particles reaching a quasi-
steady state for which a macroscopic description of fluxes of mass, momentum,
and energy can be deduced. The macroscopic fluxes at a first approximation are
linearly related to the gradients of density, temperature/pressure, and velocity. Such
relations allow one to derive transport coefficients whose detailed form depends on
assumptions about the nature of the inter-particle forces and particle structure.
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Despite the success in modeling neutral dilute gases in the collisional regime,
charged gases (plasmas) have proved to be immensely challenging. A classical
collisional theory for plasmas was developed over the past 50 plus years by many
authors, based effectively on extensions of the Chapman-Enskog-Grad formalism,
but predications of transport phenomena did not compare very well to observations,
sometimes different by several orders of magnitude. The difficulties stem in part
from two effects. On the one hand, collisions in a fully ionized plasma cannot be
treated as binary interactions since the Coulomb force is long range. The second
is that charged particles respond to the magnetic field of the medium. Large-scale
magnetic field structure induces particle drifts of various forms, particle trapping,
and so forth. The combination of classical scattering models of plasma and magnetic
field geometry improves the predictions of transport phenomena in a plasma, and
this is sometimes referred to as the neoclassical transport theory for plasmas.
However, despite some successes, the neoclassical transport theory remains largely
unsuccessful when applied to realistic plasma configurations. The reason for this
is that a plasma is almost never in a quiescent state. The long-range Coulomb force
ensures that the collective response of a plasma to fluctuations and variation governs
its behavior. Under many circumstances in space and astrophysical plasmas, particle
collisions play a relatively minor (although, as illustrated in the solar wind interstel-
lar medium interaction example above, not an unimportant) role in the dynamics of
a plasma. Collective processes in both collisional and collisionless plasmas results
in the particles organizing themselves as waves, vortices, advected fluctuations,
streamers, coherent structures, etc. that can be mutually coupled through processes
such as wave-wave coupling or turbulence. Such coupling of fluctuations and coher-
ent structures is often much more effective in transporting mass, momentum, and
energy than individual particle action. The transport theory for collisionless plasmas
is often described as anomalous transport theory. This theory has been particularly
intensively studied in an astrophysical context to describe the transport of energetic
particles in a low-frequency magnetically turbulent inhomogeneous flow.

In this book, we present a systematic treatment of classical transport theory as
applied to gases. The application of the Chapman-Enskog approach is simplified
in that we assume a relaxation time scattering operator rather than using a full
collisional integral. This allows us to address the detail of the derivation of the
transport coefficients without becoming too mired in tedious algebra. We also
used a simplified form of the gyrotropic-averaged transport equation in Chap. 2
without derivation (although this is derived in Chap. 4) as an example of the
use of polynomial expansion techniques to derive simpler transport equations. In
this case, we use the gyrotropic-averaged problem to derive both a telegrapher
transport equation and a diffusion transport equation for an isotropic distribution
of particles. The polynomial approach allows us to discuss the connection between
the telegrapher and diffusion equations. The derivation of the viscous and heat
conduction transport coefficients allows us to apply a multiple-scales perturbation
analysis to the Navier-Stokes equations to derive evolution equations for linear and
non-linear waves, the latter providing a model for weak shock waves. This leads to
a more general discussion of weak solutions and shock waves.
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Chapter 3 extends the classical transport theory of gases to a collisional plasma.
The analysis is based about the Chapman-Kolmogorov equation and the derivation
of the Fokker-Planck transport equation. The formalism of the Rosenbluth potentials
is particularly useful in deriving the transport coefficients for a variety of collisional
processes, and the Landau form of the collision operator is obtained. The collisional
processes that are considered are electron-proton, and proton-electron collisions,
collisions with a Maxwellian background, and fast particle collisions. This allows
for the derivation of the transport equations for a proton-electron plasma, which are
used to describe the diamagnetic heat flux. The two-fluid proton-electron transport
equations can be simplified further to obtain the equations of magnetohydrody-
namics (MHD). Some discussion about conservation laws associated with MHD
is presented in Chap. 3, followed by a brief presentation of MHD shock waves and
their classification based on the shock polar relation.

Chapter 4 considers anomalous transport of energetic particles in a space and
astrophysics context. Specifically, we address the transport of energetic particles that
experience pitch-angle scattering in a turbulent fluctuating magnetic field. Both the
gyrophase-averaged transport equation for non-relativistic and relativistic energy
particles is derived. The gyrophase-averaged transport equation is also known as the
focused transport equation and is appropriate to non-isotropic particle distributions.
The derivation of the focused transport equations is presented in more detail than is
found typically in the literature. The focused transport equation is still very compli-
cated and we introduce a Legendre polynomial technique to consider distributions
that are nearly isotropic. This approach, which is very systematic, yields the classical
cosmic ray transport equation derived originally by E.N. Parker, W.I. Axford, and
L.J. Gleeson. Because the interaction between energetic particles and turbulence is
so critical to the derivation of the transport coefficients, we address in some detail
the magnetic correlation tensor in Chap. 4. The use of the magnetic correlation
tensor allows the derivation of the momentum and spatial diffusion tensors using
a quasi-linear methodology. To evaluate the perpendicular component of the spatial
diffusion tensor, we utilize the non-linear guiding center approach that has become
popular. Chapter 4 concludes with some applications of the cosmic ray transport
theory. The cosmic ray transport equation is further reduced by invoking a fluid
moment closure to yield the cosmic ray two-fluid equations. Some discussion about
linear and nonlinear waves and weak shock structure is presented. A very important
application of the energetic particle transport equation is to the energization of
particles at a shock wave the mechanism of diffusive shock acceleration. This is
discussed from both steady and time-dependent perspectives. We conclude with a
brief analytic treatment of cosmic ray modulation in the heliosphere.

The final chapter, Chap. 5, considers the transport of fields. In this case, we
address the transport of low frequency magnetohydrodynamic turbulence in an
expanding flow. The MHD turbulence transport models extend classical turbulence
transport models used successfully for hydrodynamics, including in engineering
applications. A basic description of MHD turbulence is presented, based on either a
Kolmogorov or Irishnikov-Kraichnan phenomenology. Adopting one of these phe-
nomenologies allows us to develop an energy-containing transport theory for MHD
turbulence based on a mean-field decomposition of the incompressible inhomoge-
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neous MHD equations. A comparison with solar wind observations of the energy
density in magnetic field fluctuations with the theoretical transport turbulence model
illustrates the considerable success that these models have enjoyed.

The book is aimed at advanced undergraduates, graduate students, and new post-
doctoral students. The general background that is needed for students taking a class
based on this book is basic mathematical statistics, although Chap. 1 provides much
of the needed background. It is useful for students to have introductory classes in
plasma physics, statistical mechanics, and mathematical methods.

A course can be tailored in different ways, depending on the interests and needs
of the person teaching the class. In classes given at the University of Alabama in
Huntsville, I have tended to cover most of the book in a single semester, omitting
some sections in each chapter depending on the interests of the students. Graduate
students have found the pace challenging, particularly since I have required the
students to do most of the problems listed in the book. Problems are distributed
quite liberally throughout the book. A detailed solutions manual is available and
has been published by A. Dosch and G.P. Zank and is available from the publisher.
If a class has the requisite background in mathematical statistics, most of Chap. 1
can be omitted or relegated to background reading. Chapter 2 is important even for
students familiar with the H-theorem because of the systematic development from
the Chapman-Enskog approach of the hydrodynamic equations (Euler and Navier-
Stokes). The subsections on weak shocks, perturbative techniques, and shock waves
are important for later sections in Chaps. 3 and 4. The section on the telegrapher
equation in Chap. 2 can be neglected. The first sections of Chap. 3 should be
included, but the alternative, more formal derivation of the Chapman-Kolmogorov
equation can be omitted. The development of the Rosenbluth potentials should be
addressed, which includes the Landau scattering operator. Some of the particular
scattering processes can be included in a course but not all sections need to be
included. Derivation of the MHD equations from the two-fluid proton-electron
transport equations is probably necessary given their wide application, and the
section on MHD shock waves is also particularly useful. Chapter 4 provides a
comprehensive treatment of energetic particle transport in a collisionless plasma.
Depending on interests, much of the derivation of the transport coefficients from the
magnetostatic correlation tensor may be neglected but the hydrodynamic description
of a coupled thermal and energetic particle plasma system is useful. The wide
applicability of diffusive shock acceleration theory makes this section important.
Finally, Chap. 5 can be neglected if the purpose of the class is to address transport
equations for particles. However, it provides the needed background to understand
simple models of turbulence and an introduction to the transport of turbulence that
is not found elsewhere.

Reference

G.P. Zank, Modeling the interaction of the solar wind with the local interstellar medium:
A theoretical perspective. Space Sci. Rev. 89(3–4), 413–687 (1999)



Chapter 2
Statistical Background

2.1 Probability Set Function

For many interesting physical problems, we need to describe the “long-term”
behavior of systems governed by macroscopic laws and microscopic randomness.
A random event has an outcome that is uncertain and unpredictable. Sometimes
small changes in initial conditions can result in a substantially different outcome –
this is the essence of chaos. Quantities that change randomly in time and space are
called stochastic processes. Physical systems that are subject to stochastic driving
will have a random component and the variables that describe the system are
also stochastic processes. Examples of physical problems include the behavior of
gases in the presence of microscopic collisions of the constituent particles, the
collective propagation of energetic charged particles in a magnetically turbulent
medium, the collective behavior of dust particles in an accretion disk subject to
coagulation and destruction, the evolution of a gas of charged protons and electrons
(a plasma), etc.

Before considering specific physical problems, some basic statistical concepts
need to be reviewed. There are numerous excellent texts that introduce the basic
elements of probability theory and stochastic theory and this introductory chapter
draws heavily from these. The classic treatise is that of Feller (1968), from which
almost all introductory texts draw. Much of this chapter is based on the books by
Hogg and Craig (1978) and Gibra (1973).

Suppose we perform n independent experiments under identical conditions. If an
outcome A results nA times, then the probability that A occurs is

P.A/ D lim
n!1

nA

n
:

More formally, let C be the set of all possible outcomes of a random experiment. C is
the sample space. An outcome is a point or an element in the sample space. Thus,

G.P. Zank, Transport Processes in Space Physics and Astrophysics, Lecture Notes
in Physics 877, DOI 10.1007/978-1-4614-8480-6__2,
© Springer Science+Business Media New York 2014

7
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a sample space C is a set of elements or points, each of which corresponds to an
outcome of an experiment or observation. A sample space can be finite or infinite.

Example. Toss a coin twice and denote the outcomes as H (head) and T (tail). The
possible outcomes are

f.H;H/; .H; T /; .T;H/; .T; T /g ;

and so the sample space is given by

C D f.H;H/; .H; T /; .T;H/; .T; T /g :

The subsetE corresponding to the event of heads occurring on the first toss contains
two elements

E D f.H;H/; .H; T /g :

Another subset is the event F where a head occurs on the first and second toss,
given by

F D f.H;H/g :

An event E is defined as a set of outcomes, and an event has occurred if the
outcome of the experiment corresponds to an element of subset E. A null event
corresponds to the empty set ;, i.e., the set of no outcomes. If the subset E
consists of all possible outcomes of the experiment, then E is the sample space
(and obviously an event).

Define a probability set function P.C/ such that if C � C, then P.C/ is the
probability that the outcome of the random experiment is an element of C . We take
P.C/ to be the number about which the relative frequency nA=n converges after
many experiments. The properties that we want of the probability set function may
be defined as follows.

Definition. If P.C/ is defined for a subset C of the space C, and C1, C2, C3, : : : are
disjoint subsets of C, then P.C/ is called the probability set function of the outcome
of the random experiment if

(i) P.C/ � 0 ,
(ii) P.C1 [ C2 [ C3 � � � / D P.C1/C P.C2/C P.C3/C � � � ,

(iii) P.C/ D 1.

Theorem 1. For each C � C, P.C/ D 1 � P.C �/, where C � denotes the
complement of C .

Proof. Since C D C [ C � and C \ C � D ;, 1 D P.C/C P.C �/.

Theorem 2. P.;/ D 0.
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Proof. In Theorem 1, take C D ; so that C � D C. Hence

P.;/ D 1 � P.C/ D 1 � 1 D 0:

Theorem 3. If C1 and C2 are subsets of C such that C1 � C2, then P.C1/

� P.C2/.

Proof. C2 D C1 [ .C �
1 \ C2/ and C1 \ .C �

1 \ C2/ D ;. Hence

P.C2/ D P.C1/C P.C �
1 \ C2/:

But P.C �
1 \ C2/ � 0, hence P.C2/ � P.C1/.

Theorem 4. For each C � C, 0 � P.C/ � 1.

Proof. Since ; � C � C, P.;/ � P.C/ � P.C/ or 0 � P.C/ � 1.

Theorem 5. If C1 � C and C2 � C, then

P.C1 [ C2/ D P.C1/C P.C2/ � P.C1 \ C2/:

Proof. Since

C1 [ C2 D C1 [ .C �
1 \ C2/ and C2 D .C1 \ C2/ [ .C �

1 \ C2/;

we have

P.C1 [ C2/ D P.C1/C P.C �
1 \ C2/

and

P.C2/ D P.C1 \ C2/C P.C �
1 \ C2/:

Hence

P.C1 [ C2/ D P.C1/C P.C2/ � P.C1 \ C2/:

Example. Two coins are tossed and the ordered pairs form the sample space

C D fc W c D .H;H/; .H; T /; .T;H/; .T; T /g;

and let P.c 2 C/ D 1
4
. Suppose C1 is the event that a head is tossed with the first

coin and C2 the event that a head is tossed with the second coin. The events C1 and
C2 therefore correspond to the subsets

C1 D fc W c D .H;H/; .H; T /g and C2 D fc W c D .H;H/; .T;H/g:
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To find the probability that the first coin toss corresponds to a head or the second to
head, we compute

P.C1/ D P.C2/ D 1

2
;

and the probability that tossing the two coins each results in a head is given by

P.C1 \ C2/ D 1

4
:

The probability that a head is tossed by one or the other coin is given by

P.C1 [ C2/ D 1

2
C 1

2
� 1

4
D 3

4
:

Exercises

1. A positive integer from 1 to 6 is chosen by casting a die. Thus C D fc W c D
1; 2; 3; 4; 5; 6g. Let C1 D fc W c D 1; 2; 3; 4g, C2 D fc W c D 3; 4; 5; 6g. If
P.c 2 C/ D 1

6
, find P.C1/, P.C2/, P.C1 \ C2/, and P.C1 [ C2/.

2. Draw a number without replacement from the set f1; 2; 3; 4; 5g, i.e., choose a
number, and then a second from the remaining numbers, etc. Assume that all 20
possible results have the same probability. Find the probability that an odd digit
will be selected (a) the first time, (b) the second time, and (c) both times.

3. Draw cards from an ordinary deck of 52 cards and suppose that the probability
set function assigns a probability of 1

52
to each of the possible outcomes. Let

C1 denote the collection of 13 hearts and C2 the collection of 4 kings. Compute
P.C1/, P.C2/, P.C1 \ C2/ and P.C [ C2/.

4. A coin is tossed until a head results. The elements of the sample space
C are therefore H, TH, TTH, TTTH, TTTTH, etc. The probability set
function assigns probabilities 1

2
, 1

4
, 1

8
, 1

16
, etc. Show that P.C/ D 1.

Suppose C1 D fc W c is H;TH;TTH;TTTH, or TTTTHg and C2 D fc W
c is T T T TH or T T T T TH g. FindP.C1/,P.C2/,P.C1\C2/, andP.C1[C2/.

5. A coin is tossed until for the first time the same result appears twice in succession.
Let the probability for each outcome requiring n tosses be 1=2n�1. Describe the
sample space, and find the probability of the events (a) the tosses end before the
sixth toss, (b) an even number of tosses is required.

6. Find P.C1 \ C2/ if the sample space is C D C1 [ C2, P.C1/ D 0:8 and
P.C2/ D 0:5.

7. Suppose C � C D fc W 0 < c < 1g with C D fc W 4 < c < 1g and
P.C/ D R

C
e�xdx. Determine P.C/, P.C �/, and P.C [ C �/.

8. If C � C is a set for which
R
C
e�jxjdx exists, C D fc W �1 < x < 1g, then

show that this set function is not a probability set function. What constant should
the integral be multiplied by to make it a probability set function?

9. If C1 	 C and C2 	 C of the sample space C, show that

P.C1 \ C2/ � P.C1/ � P.C1 [ C2/ � P.C1/C P.C2/:
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2.2 Random or Stochastic Variables

As discussed above, elements of a sample space C may not be numbers, being
outcomes such as “heads” or “tails”. Since we are typically interested in quantifying
the outcome of an experiment, we formulate a rule by which elements c 2 C may
be represented by numbers x, pairs or n-tuples of numbers .x1; x2; : : : ; xn/.

Definition. Consider a random experiment with a sample space C. A function X
that assigns to each c 2 C one and only one real number x D X.c/ is a random
variable, and the space of X is the set of real numbers A D fx W x D X.c/; c 2 Cg.

Example. Coin toss: C D fc W where c is T or H g, and T 
 Tail, H 
 Head.
Define a function X such that

X D
�
0 if c D T

1 if c D H

ThereforeX is a real-valued function defined on C which maps c 2 C to a set of real
numbers A D fx W x D 0; 1g. X is a random variable and the space associated with
X is A.

Sometimes the set C has elements that are real numbers, so that if we write X.c/ D
c, then A D C.

Two forms of random variable can be defined. (1) Discrete random variables
are those that take on a finite or denumerably infinite number of distinct values.
(2) Continuous random variables are those that take on a continuum of values
within the given range. Random variables are generally denoted by capital Latin
letters such asX , Y ,Z. Some examples of discrete and continuous random variables
are the daily demand for coffee at a Starbucks (discrete), the number of customers
at a checkout per hour (discrete), the daily number of absences from a company
(discrete), the waiting time of a passenger for a train at a particular train station
(continuous), the daily consumption of gas by your car (continuous), and the annual
snowfall in Alabama (continuous).

Example. A vendor at a rugby game buys “koeksisters” (a form of unfilled donut
from South Africa) for $1.00 each and sells them for $2.50 each. Unsold koeksisters
cannot be returned. Suppose the demand during a game is a random variable Y .
Suppose the vendor orders a quantity X of koeksisters. Let F denote the profit after
the game, which can then be computed as

F.Y / D
�

$1:50X Y � X

$1:50Y � $1:00.X � Y / Y < X

where Y D 1; 2; : : :.

Example. If a die is rolled twice, the random variable X that describes the sum of
the values is X.c/ D c where c D 2; 3; : : : ; 12.
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Example. A sample of five items is drawn randomly from a lot. The random variable
X that describes the number of defective items in the sample is X.c/ D c, where
c D 0; 1; 2; 3; 4; 5. If the random variable Y is the number of non-defective items
in the sample, define the random variable Z D jX � Y j. Thus, the random variable
Z.c/ D c where c D 1; 3; 5.

Just as we refer to an “event C ” with C � C, we can introduce an event A. Like
the definition for the probability P.C/, we define the probability of the event A,
P.X 2 A/. With A � A, let C � C such that C D fc W c 2 C and X.c/ 2 Ag. Thus
C has as its elements all outcomes in C for which the random variableX has a value
that is in A. This means that we can define P.A/ to be equal to be P.C/ where
C D fc W c 2 C and X.c/ 2 Ag. This allows us to use the same notation without
confusion.

That P.A/ is a probability set function can be seen as follows. For condition (i)
above, P.A/ D P.C/ � 0.

Consider two mutually exclusive events A1 and A2. Here

P.A1 [ A2/ D P.C/;

where C D fc W c 2 C and X.c/ 2 A1 [ A2g. However,

C D fc W c 2 C and X.c/ 2 A1g [ fc W c 2 C and X.c/ 2 A2g D C1 [ C2;

say. Since C1 and C2 disjoint, we have

P.C/ D P.C1/C P.C2/ D P.A1/C P.A2/;

which is condition (ii).
Finally, since C D fc W c 2 C and X.c/ 2 Ag, it implies that P.A/ D P.C/ D 1.

Example. Let a coin be tossed twice, and consider the number of heads observed.
The sample space is

C D fc W where c D T T; TH;HT;HH g

X.c/ D
8
<

:

0 if c = TT
1 if c D TH or HT
2 if c D HH

Hence, A D fx W X D 0; 1; 2g.
Let A � A such that A D fx W x D 1g. What is P.A/?
Since X.c/ D 1 if c is TH or HT ,

) C � C such that C D fc W c D TH or HT g
) P.A/ D P.C/ i.e., P.X D 1/ D P.C/:
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Define

C1 D fc W c D T T g
C2 D fc W c D TH g
C3 D fc W c D HT g
C4 D fc W c D HH g

Suppose P.C/ assigns a probability of 1
4

to each Ci . Then P.C1/ D 1
4
, P.C2 [

C3/ D 1
2
, and P.C4/ D 1

4
, so that P.X D 0/ D 1

4
, P.X D 1/ D 1

2
, and P.X D

2/ D 1
4
.

Example. An experiment yields a random value in the interval .0; 1/, so the sample
space is C D fc W 0 < c < 1g. Let the probability set function be given by the
“length”

P.C/ D
Z

C

dc;

so, for example, if C D fc W 1
3
< c < 2

3
g then

P.C/ D
Z 2=3

1=3

dc D 1

3
:

Define a random variable X D X.c/ D 2c C 1, so that the space A D fx W 1 <
x < 3g. For A � A, such that e.g., A D fx W a < x < b; a > 1; b < 3g, we have
C D fc W .a � 1/=2 < c < .b � 1/=2; a > 1; b < 3g. Hence

P.A/ D P.C/ D
Z .b�1/=2

.a�1/=2
dc D

Z b

a

1

2
dx:

Typically, however, we assume a probability distribution for the random variable
X rather than introducing the sample space C and the probability set function P.C/.

Example. Suppose the probability set function P.A/ of a random variable X is

P.A/ D
Z

A

f .x/dx where f .x/ D 2x; x 2 A D fx W 0 < x < 1g:

A1 D fx W 0 < x < 1
4
g and A2 D fx W 1

2
< x < 3

4
g are subsets of A. Then

P.A1/ D P.X 2 A1/ D
Z 1=4

0

2xdx D 1

16
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and

P.A2/ D P.X 2 A2/ D
Z 3=4

1=2

2xdx D 5

16
:

Hence, it follows that since A1 \ A2 D ;, P.A1 [ A2/ D P.A1/C P.A2/ D 3
8
.

Example. Consider two random variables X and Y , and let A D f.x; y/ W 0 < x <
y < 1g be the 2-space. Suppose the probability set function is

P.A/ D
Z Z

A

2dxdy:

If A1 D f.x; y/ W 1
2
< x < y < 1g, then

P.A1/ D P Œ.X; Y / 2 A1� D
Z 1

1=2

Z y

1=2

2dxdy D
Z 1

1=2

.2y�1/dy D y2�yj11=2 D 1

4
:

Suppose A2 D f.x; y/ W x < y < 1; 0 < x � 1
2
g, then A2 D A�

1 , and

P.A2/ D P Œ.X; Y / 2 A2� D P.A�
1 / D 1 � P.A1/ D 3

4
:

Exercises

1. Select a card from a standard deck of 52 playing cards with outcome c. Let
X.c/ D 4 if c is an ace, X.c/ D 3 for a king, X.c/ D 2 for a queen, X.c/ D 1

for a jack, and X.c/ D 0 otherwise. Suppose P.C/ assigns a probability 1
52

to
each outcome c. Calculate the probability P.A/ on the space A D fx W x D
0; 1; 2; 3; 4g of the random variable X .

2. Suppose the probability set function P.A/ of the random variable X is P.A/ DR
A
f .x/dx where f .x/ D 2x=9, x 2 A D fx W 0 < x < 3g. For A1 D fx W 0 <

x < 1g and A2 D fx W 2 < x < 3g, compute P.A1/, P.A2/, and P.A1 [ A2/.
3. Suppose that the random variable X has space A D fx W 0 < x < 1g. If
A1 D fx W 0 < x < 1

2
g and A2 D fx W 1

2
� x < 1g, find P.A2/ if P.A1/ D 1

4
.

2.3 The Probability Density Function

The distribution of the random variable X refers to the distribution of probability,
and this applies even when more than one random variable is involved. We discuss
some random variables whose distributions can be described by a probability
density function of both the discrete and continuous type. Consider first probability
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distribution functions (pdfs) of one random variable. Suppose X denotes a random
variable with one-dimensional space A such that A is a set of discrete points. Let
f .x/ be a one-to-one function f .x/ > 0, x 2 A with

X

A
f .x/ D 1:

Whenever a probability set function P.A/, A � A, can be expressed as

P.A/ D
X

A

f .x/;

then X is a random variable of the discrete type, and X has a discrete distribution.

Example. Consider a discrete random variable X with space A D fx W x D
0; 1; 2; 3g, and let

P.A/ D
X

A

f .x/;

where

f .x/ D 3Š

xŠ.3 � x/Š
�
1

2

�3
; x 2 A;

(recall 0Š D 1). If A D fx W x D 0; 1; 2g, then

) P.X 2 A/ D 3Š

0Š3Š

�
1

2

�3
C 3Š

1Š2Š

�
1

2

�3
C 3Š

2Š1Š

�
1

2

�3
D 7

8
:

Note that P.A/ D 1:

Example. Consider a discrete random variable X with space A D fx W x D
0; 1; 2; 3; : : :g, and let

f .x/ D
�
1

2

�x
; x 2 A:

Thus, P.X 2 A/ D P
A f .x/. For A D fx W x D 1; 3; 5; 7; : : : g,

P.X 2 A/ D 1

2
C
�
1

2

�3
C
�
1

2

�5
C � � � D 2

3
:
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Suppose that the one-dimensional Riemann integral over the space A satisfies

Z

A
f .x/dx D 1;

where f .x/ is a one-to-one function f .x/ > 0, x 2 A with at most a finite number
of discontinuities in every finite subset (interval) of A. Whenever a probability set
function P.A/, A � A, can be expressed as

P.A/ D P.X 2 A/ D
Z

A

f .x/dx;

then X is a random variable of the continuous type, and X has a continuous
distribution.

Example. Let A D fx W 0 < x < 1g and f .x/ D ae�3x , x 2 A. The probability
set function is

P.X 2 A/ D
Z

A

f .x/dx D
Z

A

ae�3xdx:

Since P.A/ D 1,

P.A/ D
Z 1

0

ae�3xdx D 1 H) a D 3:

If A D fx W 0 < x < 1g, then

P.X 2 A/ D
Z 1

0

3e�3xdx D 1 � e�3:

The probability P.A/ is determined completely by the probability density function
(pdf) f .x/, whether or not X is a discrete or continuous random variable.

The concept of the pdf of one random variable is readily extended to the pdf of
multiple random variables. For example, suppose the two random variables X and
Y are discrete or continuous and have a distribution such that the probability set
function P.A/, A � A can be expressed as

P.A/ D P Œ.X; Y / 2 A� D
XX

A

f .x; y/;

or

P.A/ D P Œ.X; Y / 2 A� D
Z Z

A

f .x; y/dxdy:
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In either case, f .x; y/ is the pdf of the two random variables X and Y . Of course,
P.A/ D 1.

Suppose that the space of a continuous random variable X is A D fx W 0 < x <
1g and that the pdf is 3e�3x , x 2 A. We can write

f .x/ D
�
3e�3x 0 < x < 1
0 elsewhere

and f .x/ is the pdf of X . Hence

Z 1

�1
f .x/dx D

Z 0

�1
0dx C

Z 1

0

3e�3xdx D 1:

If A � A such that A D fx W a < x < bg, then

P.A/ D P.a < x < b/ D
Z b

a

f .x/dx:

If A D fx W x D ag, then P.A/ D 0, which implies that P.a < x < b/ D
P.a � x � b/.

Example. Suppose the random variable X has pdf

f .x/ D
�
3x2; 0 < x < 1

0; elsewhere

To find P.1
4
< X < 1

2
/, we evaluate

P.
1

4
< X <

1

2
/ D

Z 1=2

1=4

f .x/dx D
Z 1=2

1=4

3x2dx D 3

32
:

Similarly,

P.�1
2
< X <

1

2
/ D

Z 1=2

�1=2
f .x/dx D

Z 0

�1=2
0dx C

Z 1=2

0

3x2dx D 1

8
:

Example. Let

f .x; y/ D
�
6x2y 0 < x < 1; 0 < y < 1

0 elsewhere
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be the pdf of two random variables X , Y . For example,

P.0 < X <
3

4
;
1

3
< Y < 2/ D

Z 2

1=3

Z 3=4

0

f .x; y/dxdy

D
Z 1

1=3

Z 3=4

0

6x2ydxdy C
Z 2

1

Z 3=4

0

0dxdy

D 3

8
C 0 D 3

8
:

Exercises

1. Find the constant a that ensures that f .x/ is a pdf of the random variable X : (a)
f .x/ D a

�
2
3

�x
, x D 1; 2; 3; : : :, 0 elsewhere. (b) f .x/ D axe�x , 0 < x < 1, 0

elsewhere.
2. Consider a function of the random variable X such that

f .x/ D
8
<

:

ax 0 � x < 10

a.20 � x/ 10 � x < 20

0 elsewhere

Find a so that f .x/ is a pdf and sketch the graph of the pdf. Compute P.X � 10/

and P.15 � X � 20/.
3. Let f .x/ D x=15, x D 1; 2; 3; 4; 5, 0 elsewhere, be the pdf of X . Find P.X D
1 or 2/, P.1

2
< X < 5

2
/, and P.1 � X � 2/.

4. Compute P.jX j < 1/ and P.X2 < 9/ for the following pdfs of X , (a) f .x/ D
x2=18, �3 < x < 3, 0 elsewhere. (b) f .x/ D .x C 2/=18, �2 < x < 4, 0
elsewhere.

5. Given P.X > a/ D e��a .�aC 1/, � > 0, a � 0, find the pdf of X and
P.X > ��1/.

6. Let f .x/ D x�2 1 < x < 1, 0 elsewhere, be the pdf of X . If A1 D fx W 1 <
x < 2g and A2 D fx W 4 < x < 5g, find P.A1 [ A2/ and P.A1 \ A2/.

7. Let f .x; y/ D 4xy, 0 < x < 1, 0 < y < 1, 0 elsewhere, be the pdf of X and Y .
Find P.0 < X < 1

2
; 1
4
< Y < 1/, P.X D Y /, P.X < Y /, and P.X � Y /.

8. Given that the random variable X has the pdf

f .x/ D
�
5
a

�0:1a < x < 0:1a
0 elsewhere

and P.jX j < 2/ D 2P.jX j > 2/, find the value of a.
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2.4 The Distribution Function

Suppose a random variable X has the probability set function P.A/, and A is a 1D
set. For a real number x, let A D fy W �1 < y � xg, so that P.A/ D P.X 2
A/ D P.X � x/. The probability is thus a function of x, say F.x/ D P.X � x/.
The function F.x/ is the distribution function of the random variable X . Hence, if
f .x/ is the pdf of X, we have for a discrete random variable X

F.x/ D
X

y�x
f .y/;

and for a continuous random variable X

F.x/ D
Z

y�x
f .y/dy:

The distribution function is therefore of a discrete or continuous type.

Example. A die is rolled once. The sample space is C D f1; 2; 3; 4; 5; 6g. To find
the probability that the value on the upturned face is less than or equal to three, let
X be the random variable whose value is less than or equal to three. Thus, the event
X � 3 is the subset C D f1; 2; 3g � C. The distribution function

F.3/ D P.X � 3/ D P.C/ D P.1/C P.2/C P.3/ D 1

6
C 1

6
C 1

6
D 1

2
:

Sketch the graph of the distribution function.

A distribution function F.x/ possesses the following properties.

(i) 0 � F.x/ � 1 because 0 � P.X � x/ � 1.
(ii) F.x/ is a non-decreasing function of x. This can be seen as follows. Suppose

x1 < x2. Then

fx W x � x2g D fx W x � x1g [ fx W x1 < x � x2g

and

P.X � x2/ D P.X � x1/C P.x1 < X � x2/;

from which it follows that

F.x2/ � F.x1/ D P.x1 < X � x2/ � 0:

(iii) F.1/ D 1 and F.�1/ D 0 (fx W x � �1g D ;).
(iv) If a < b, then, from (ii),

P.a < X < b/ D F.b/ � F.a/:
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Without proof,

P.X D b/ D F.b/ � F.b�/;
where F.b�/ denotes the left-hand limit of F.x/ at x D b. If the distribution
is continuous at x D b, then P.X D b/ D 0.

(v) Also without proof, F.x/ is continuous to the right at each point x.

Example. The distribution function of a random variable X is given by

F.x/ D

8
ˆ̂
<

ˆ̂
:

0 x < 0
1
4
0 � x < 1

2
3
1 � x < 2

1 x � 2

Thus,

P.X � 1/ D F.1/ D 2

3
I

P.0 < X � 2/ D F.2/ � F.0/ D 1 � 1

4
D 3

4
I

P.1 < X � 2/ D F.2/ � F.1/ D 1 � 2

3
D 1

3
I

P.1 � X � 2/ D F.2/ � F.0/ D 1 � 1

4
D 3

4
:

Example. Suppose the random variable X is continuous with pdf f .x/ D e�x ,
0 < x < 1, 0 elsewhere. The distribution function of X is therefore

F.x/ D
Z x

�1
0dy; x < 0

D
Z x

0

e�ydy D 1 � e�x; 0 � x

Sketch this function. F.x/ is a continuous function for all real x, and the derivative
exists at all points except x D 0.

Example. Let a distribution function be given by (sketch this function)

F.x/ D
8
<

:

0; x < 0
xC1
2
; 0 � x < 1

1; 1 � x

so that

P.�3 < X � 1

2
/ D F

�
1

2

�

� F.�3/ D 3

4
� 0 D 3

4
;
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for example, and

P.X D 0/ D F.0/ � F.0�/ D 1

2
� 0 D 1

2
:

Note that F.x/ is a mixture of both discrete and continuous type distributions.

Suppose X is a random variable with space A, and Y D g.X/ is a function of
X . Y D g.X/ is a random variable with space B D fy W y D g.x/; x 2 Ag and a
probability set function. If y 2 B, the event Y D g.X/ � y occurs when and only
when the event X 2 A � A occurs, where A D fx W g.x/ � yg. The distribution
function of Y is therefore

G.y/ D P.Y � y/ D P.g.X/ � y/ D P.A/:

Example. Suppose a random variable X has the pdf f .x/ D x C 1
2
, 0 < x < 1, 0

elsewhere. The distribution function of X is given by

FX.x/ D
Z x

0

�

y C 1

2

�

dy D 1

2
.x2 C x/;

so that

FX.x/ D
8
<

:

0; x < 0
x
2
.1C x/; 0 � x � 1

1; x � 1

Consider now the composite random variable Y D X2. The distribution function
of Y is

FY .a/ D P.Y � a/ D P.X2 � a/ D P.�p
a � X � p

a/:

Y is always non-negative,

FY .a/ D P.X � p
a/ D FX.

p
a/;

therefore

FY .a/ D

8
<̂

:̂

0; a < 0p
a

2
.1C p

a/; 0 � a � 1

1; a � 1

Differentiation of FY yields the pdf as

fY .y/ D
(

1
2

�
1C 1

2
p
y
;
�
0 � y � 1

0: elsewhere
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Finally, for example,

P.Y > 0:49/ D 1�P.Y � 0:49/ D 1�FY .0:49/ D 1� 1
2
.0:49�p

0:49/ D 0:405:

Extending these ideas to two or more random variables e.g., X and Y , is readily
accomplished. Let P.A/ be the probability set function of X and Y , where A is a
2D set. If A D f.u; v/ W u � x; v � yg, x, y real numbers, then

P.A/ D P Œ.X; Y / 2 A� D P.X � x; Y � y/:

The distribution function of X and Y is

F.x; y/ D P.X � x; Y � y/:

If X and Y are continuous type random variables with pdf f .x; y/, then

F.x; y/ D
Z y

�1

Z x

�1
f .u; v/dudv;

so that

@2F.x; y/

@x@y
D f .x; y/;

at continuous points.

Example. The random variables X , Y , and Z have the pdf f .x; y; z/ D e�.xCyCz/,
0 < x; y; z < 1, 0 elsewhere. The distribution function of X , Y , and Z, is

F.x; y; z/ D P.X � x; Y � y;Z � z/

D
Z z

0

Z y

0

Z x

0

e�.uCvCw/dudvdw

D .1 � e�x/.1 � e�y/.1 � e�z/; 0 � x; y; z < 1;

and 0 elsewhere.

Exercises

1. Let f .x/ be the pdf of a random variable X . Find the distribution function F.x/
of X and sketch the graph

f .x/ D 1, x D 0, 0 elsewhere.
f .x/ D 1=3, x D �1; 0; 1, 0 elsewhere.
f .x/ D x=15, x D 1; 2; 3; 4; 5, 0 elsewhere.
f .x/ D 3.1 � x/2, 0 < x < 1, 0 elsewhere.
f .x/ D x�2, 1 < x < 1, 0 elsewhere.
f .x/ D 1=3, 0 < x < 1 and 2 < x < 4, 0 elsewhere.
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2. Given the distribution function

F.x/ D
8
<

:

0; x < �1
xC2
4
; �1 � x < 1

1; 1 � x

Sketch F.x/ and compute P.� 1
2
< X � 1

2
/, P.X D 0/, P.X D 1/, and

P.2 < X � 3/.
3. Suppose the random variable X has a distribution function F.x/ D 1 � e�0:1x ,
x � 0. Find (a) the pdf of X , (b) P.X > 100/, and (c) let Y D 2X C 5 and find
the corresponding distribution functionFY .

4. Let f .x/ D 1, 0 < x < 1, 0 elsewhere be the pdf of X . Find the distribution
function and pdf of Y D p

X .
5. Let f .x/ D x=6, x D 1; 2; 3, 0 elsewhere, be the pdf of X . Find the distribution

function and pdf of Y D X2.
6. Suppose that a random variable X has the pdf

f .x/ D
�
1
2
; �1 � x � 1

0; elsewhere

Determine (a) the distribution function F.x/; (b) the probability density function
of the random variable Y D X2, and (c) compute P.Y > 0:36/.

2.5 Expectations and Moments

One of the most important concepts needed for the transport theory of almost any
physical system is that of moments. This section provides the foundation for the
remaining chapters. Suppose X is a continuous or discrete random variable with
pdf f .x/ and let u.X/ be a function of X such that

EŒu.x/� D
Z 1

�1
u.x/f .x/dx; or EŒu.x/� D

X

x

u.x/f .x/

exists, then EŒu.x/� is called the mathematical expectation or expected value of
u.x/.

More generally, if X1, X2; : : : ; Xn are continuous random variables with joint
pdf f .x1; x2; : : : xn/, then for the function u.X1;X2; : : : Xn/, the expectation is
defined by

EŒu.x1; x2; : : : xn/� D
Z 1

�1
� � �
Z 1

�1
u.x1; x2; : : : xn/f .x1; x2; : : : xn/dx1dx2 : : : dxn:

The case for discrete random variables is similarly defined.
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The expectation possesses the following properties:

1. For a constant k, E.k/ D R1
�1 kf .x/dx D k

R1
�1 f .x/dx D k.

2. For a constant k, E.ku/ D kE.u/.
3. For constants k1; k2, E.k1u1 C k2u2/ D k1E.u1/C k2E.u2/.
4. For constants c and k, EŒ.ku/c� D kcE.uc/ or E.kX/c D kcE.Xc/.

Properties (1)–(3) demonstrate that E is a linear operator.

Example. Suppose X has the pdf

f .x/ D
�
2x; 0 < x < 1

0; elsewhere

Corresponding expectations are

E.X/ D
Z 1

�1
xf .x/dx D

Z 1

0

x2xdx D 2

3

E.X2/ D
Z 1

�1
x2f .x/dx D

Z 1

0

x22xdx D 1

2

E.X C 2X2/ D 2

3
C 2

1

2
D 5

3
:

Example. Suppose X and Y have the joint pdf

f .x; y/ D
�
x C y; 0 < x < 1; 0 < y < 1

0; elsewhere

Then

E.XY / D
Z 1

0

Z 1

0

xy.x C y/dxdy

D
Z 1

0

�
1

3
y C 1

2
y2
�

dy D 1

3
:

Similarly

E.XY 2/ D
Z 1

�1

Z 1

�1
xy2f .x; y/dxdy

D
Z 1

0

Z 1

0

xy2.x C y/dxdy D 17

12
:

Example. Suppose a rod of length three units is randomly divided into two parts. If
X is the length of the left-hand piece, we might assume that X has the pdf



2.5 Expectations and Moments 25

f .x/ D
�
1
3
; 0 < x < 3

0; elsewhere

Note that

Z 3

0

f .x/dx D 1:

Hence the expected value of the length X is

E.X/ D
Z 3

0

x
1

3
dx D 3

2
and E.3 �X/ D 3

2
:

However, note that the expected product of the two lengths is

EŒX.3 �X/� D
Z 3

0

x.3 � x/1
3
dx D 9

6
D 3

2
¤
�
3

2

�2
;

illustrating that the expected value of a product is not the product of expected values.

For a random variable X that is either continuous or discrete with pdf f .x/, let
u.X/ D X . This defines the mean value � of X with

� D E.X/ D
� R1

�1 xf .x/dx continuousP
x xf .x/ discrete

The variance �2 of X is obtained by taking u.X/ D .X � �/2 i.e.,

�2 D EŒ.X � �/2� D
Z 1

�1
.x � �/2f .x/dx

for a continuous random variable (an analogous definition for a discrete random
variable holds). The standard deviation of X is simply � . Observe that since E is a
linear operator,

�2 D EŒ.X � �/2� D E.X2 � 2�X C �2/

D E.X2/ � 2�E.X/C �2

D E.X2/ � �2:

The variance �2 of a random variable represents a measure of the variability
of observations or fluctuations about the mean �. If a random variable has a small
variance or standard deviation, then most of the values are grouped around the mean.
We may therefore expect the probability that a random variable assumes a value
within an interval about the mean is greater than for a similar random variable with
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a larger variance. A useful but rather weak result for estimating the probability of
a random variable falling within n standard deviations of its mean is the following
inequality.

Theorem (Chebyshev’s inequality). The probability that any random variable X
falls within n standard deviations of the mean is at least .1 � n�2/, or equivalently

P.� � n� < X < �C n�/ � 1 � n�2:

Proof. Since

�2 D EŒ.X � �/2� D
Z 1

�1
.x � �/2f .x/dx

D
Z ��n�

�1
.x � �/2f .x/dx C

Z �Cn�

��n�
.x � �/2f .x/dx C

Z 1

�Cn�
.x � �/2f .x/dx

�
Z ��n�

�1
.x � �/2f .x/dx C

Z 1

�Cn�
.x � �/2f .x/dx

since the middle integral is non-negative. Because jx � �j � n� whenever x �
�Cn� or x � ��n� , we have .x��/2 � n2�2 in both remaining integrals. Thus,

�2 �
Z ��n�

�1
n2�2f .x/dx C

Z 1

�Cn�
n2�2f .x/dx

from which we obtain
Z ��n�

�1
f .x/dx C

Z 1

�Cn�
f .x/dx � n�2:

Hence we have established

P.� � n� < X < �C n�/ D
Z �Cn�

��n�
f .x/dx � 1 � n�2:

By way of example, for n D 2, the random variable X has a probability of
at least 1 � .2/�2 D 3=4 of being within two standard deviations of the mean,
or equivalently, that 3/4 or more of the observations of any distribution fall in the
interval �˙ 2� .

Example. Suppose a random variable X with an unknown probability distribution
has a mean � D 8, a variance �2 D 9. Then, for example,

P.�4 < X < 20/ D P Œ8 � .4/.3/ < X < 8C .4/.3/� � 15

16
:
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Consider instead

P.jX � 8j � 6/ D 1 � P.jX � 8j < 6/ D 1 � P.�6 < X � 8 < 6/

D 1 � P Œ8 � .2/.3/ < X < 8C .2/.3/� � 1

4
:

These values are lower bounds only.

Another important concept is the covariance and the related correlation function
since it enables the introduction of the idea of statistical independence and stationar-
ity of a random variable. These concepts are particularly important for the statistical
description of turbulence, for example. Let X , Y , and Z be random variables with
joint pdf f .x; y; z/. The mathematical expectation

EŒ.X � �1/.Y � �2/� D E.XY � �2X � �1Y C �1�2/

D E.XY / � �2E.X/ � �1E.Y /C �1�2

D E.XY / � �1�2;

is the covariance of X and Y . Here �1, �2, �3, �21 , �22 , and �23 denote the means
and variances of X , Y , and Z respectively. Similarly, the covariance of X and Z is
EŒ.X � �1/.Z � �3/� and the covariance of Y and Z is EŒ.Y � �2/.Z � �3/�. If
the standard deviations �1 > 0 and �2 > 0, we define the correlation coefficient of
X and Y as

�12 D EŒ.X � �1/.Y � �2/�
�1�2

:

In general, if the standard deviations are positive, the correlation coefficient of any
two random variables is the covariance of the two random variables divided by the
product of the their standard deviations.

Example. The random variables X and Y have the joint pdf

f .x; y/ D
�
x C y; 0 < x < 1; 0 < y < 1;

0; elsewhere

To compute the correlation coefficient, we need

�1 D E.X/ D
Z 1

0

Z 1

0

x.x C y/dxdy D 7

12
;

�2 D E.Y / D
Z 1

0

Z 1

0

y.x C y/dxdy D 7

12
;
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and

�21 D E.X2/ � �21 D
Z 1

0

Z 1

0

x2.x C y/dxdy �
�
7

12

�2
D 11

144
;

�22 D E.Y 2/ � �22 D
Z 1

0

Z 1

0

y2.x C y/dxdy �
�
7

12

�2
D 11

144
:

The covariance of X and Y is

E.XY / � �1�2 D
Z 1

0

Z 1

0

xy.x C y/dxdy �
�
7

12

�2
D � 1

144
;

yielding the correlation coefficient as

� D � 1
144q�

11
144

� �
11
144

� D � 1

11
:

An important expectation is the moment generating function of a random variable
X , either continuous or discrete. Suppose there exists a finite real number t for
which the expectation

E.etX/ D
Z 1

�1
etxf .x/dx or E.etX/ D

X

x

etxf .x/

(continuous or discrete respectively) exists. Then, M.t/ D E.etX/ is the moment
generating function. Setting t D 0 ) M.0/ D 1. Not every distribution has
a (real-valued) moment generating function, but if it does, then the moment-
generating function is unique and completely determines the distribution of the
random variable.

For example, let X be a continuous random variable with

M.t/ D .1 � t /�2 D
Z 1

�1
etxf .x/dx; t < 1:

It is not obvious how to determine f .x/. Consider a distribution with pdf

f .x/ D
�
xe�x; 0 < x < 1
0 elsewhere

Then

M.t/ D
Z 1

0

etxxe�xdx D
Z 1

0

xe�.1�t/xdx
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D
Z 1

0

e�.1�t/x

1 � t dx D .1 � t /�2:

Thus, the pdf has the moment generating function M.t/ D .1 � t /�2, t < 1.
An important property of moment generating functions is derivatives of all orders

exist at t D 0,

dM.t/

dt
D M 0.t/ D

Z 1

�1
xetxf .x/dx

and analogously for a discrete random variable X . Hence, for both cases, t D 0

implies

M 0.0/ D E.X/ D �:

Similarly, the second derivative

M 00.t/ D
Z 1

�1
x2etxf .x/dx;

yields M 00.0/ D E.X2/. Hence,

�2 D E.X2/ � �2 D M 00.0/ � 	
M 0.0/


2
:

Thus, using the previous example M.t/ D .1 � t /�2, t < 1, yields

M 0.t/ D 2.1 � t /�3; and M 00.t/ D 6.1 � t /�4;

so that � D M 0.0/ D 2 and �2 D M 00.0/ � �2 D 2.
In general, for m > 0 an integer, the mth derivative of the moment generating

function generates the mth moment of the distribution,

Mm.0/ D E.Xm/ D
Z 1

�1
xmf .x/dx or

X

x

xmf .x/;

and this is used to define macroscopic quantities for e.g., gases, plasmas, collections
of stars, etc.

Note that a mean, or any other higher-order moments or expectations, need not
exist even for a well-defined pdf, as the following example illustrates.

Example. Suppose the random variable X has pdf

f .x/ D
�
x�2; 1 < x < 1
0; elsewhere
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Then
Z 1

1

xx�2dx D lim
c!1

Z c

1

dx

x
D lim

c!1.ln c � ln1/;

does not exist, and hence neither does the mean value of X , nor other higher-order
expectations.

Example. Consider the moment generating function M.t/ D et
2=2, �1 < x

< 1. We can use an alternative approach to computing moments rather than simply
differentiating. We may write

et
2=2 D 1C 1

1Š

�
t 2

2

�

C 1

2Š

�
t 2

2

�2
C � � � C 1

kŠ

�
t 2

2

�k
C � � �

D 1C 1

2Š
t2 C .3/.1/

4Š
t4 C � � � C .2k � 1/.2k � 3/ � � � .3/.1/

.2k/Š
t2k C � � �

The MacLaurin’s series for M.t/ is

M.t/ D M.0/C M 0.0/
1Š

t C M 00.0/
2Š

t2 C � � � C Mm.0/

mŠ
tm C � � �

D 1C E.X/

1Š
t C E.X2/

2Š
t2 C � � � C E.Xm/

mŠ
tm C � � �

Thus the coefficient of .tm=mŠ/ in the MacLaurin expansion ofM.t/ isE.Xm/. For
the example above, we therefore have

E.X2k/ D .2k � 1/.2k � 3/ � � � .3/.1/ D .2k/Š

2kkŠ
;

k D 1; 2; 3; : : : ; and E.X2k�1/ D 0, k D 1; 2; 3; : : : :

Before completing this section, we should point out that many functions do
not have real-valued moment generating functions. However, if we define �.t/ D
E.eitX /, t an arbitrary real number, then this expectation exists for every dis-
tribution and is called the characteristic function of the distribution. In fact,
the characteristic function may be defined from the pdf f .x/ using the Fourier
integral

�.t/ D heitxi D
Z 1

�1
eitxf .x/dx;

and of course the inverse Fourier transform yields the pdf
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f .x/ D 1

2�

Z 1

�1
e�i tx�.t/dt:

By expanding the exponential in the Fourier integral, we can compute moments as
before,

�.t/ D
Z 1

�1

�

1C i tx � 1

2
t2x2 C � � �

�

f .x/dx

D 1C iE.X/t � 1

2
E.X2/t2 C � � �

Exercises

1. Suppose X has the pdf

f .x/ D
�
xC2
18
; �2 < x < 4

0; elsewhere

Find E.X/, EŒ.X C 2/3�, and EŒ6X � 2.X C 2/3�.
2. The median of a random variable X is the value x such that the distribution

function F.x/ D 1
2
. Compute the median of the random variable X for the pdf

f .x/ D
�
2x; 0 < x < 1

0; elsewhere

3. The mode of a random variable X is the value that occurs most frequently -
sometimes called the most probable value. The value a is the mode of the
random variable X if

f .a/ D maxf .x/;

(for a continuous pdf). The mode is not necessarily unique. Compute the mode
and median of a random variable X with pdf

f .x/ D
(
2
3
x; 0 � x � 1

1
3
; 1 < x � 3:

4. Suppose X and Y have the joint pdf

f .x; y/ D
�
e�x�y; 0 < x < 1; 0 < y < 1
0; elsewhere

and that u.X; Y / D X , v.X; Y / D Y , and w.X; Y / D XY . Show that
EŒu.X; Y /� �EŒv.X; Y /� D EŒw.X; Y /�.
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5. If X and Y are two exponentially distributed random variable with pdfs

fX.x/ D 2e�2x; x � 0I fY .y/ D 4e�4y; y � 0;

calculate E.X C Y /.
6. Suppose X and Y have the joint pdf

f .x; y/ D
�
2; 0 < x < y; 0 < y < 1

0 elsewhere

and that u.X; Y / D X , v.X; Y / D Y , and w.X; Y / D XY . Show that
EŒu.X; Y /� �EŒv.X; Y /� ¤ EŒw.X; Y /�.

7. Let X have a pdf f .x/ that is positive at x D �1; 0; 1 and zero elsewhere. (a)
If f .0/ D 1

2
, find E.X2/. (b) If f .0/ D 1

2
, and if E.X/ D 1

6
, determine f .�1/

and f .1/.
8. A random variable X with an unknown probability distribution has a mean
� D 12 and a variance �2 D 9. Use Chebyshev’s inequality to bound P.6 <
X < 18/ and P.3 < X < 21/.

9. Two distinct integers are chosen randomly without replacement from the first
six positive integers. What is the expected value of the absolute value of the
difference of these two numbers?

10. Assume that the random variable X has mean �, standard deviation � , and
moment generating function M.t/. Show that

E

�
X � �
�

�

D 0I E

"�
X � �
�

�2#

D 1;

and

E

�

exp

�

t

�
X � �
�

��


D e��t=�M
�
t

�

�

:

11. Suppose that EŒ.x � b/2� exists for a random variable X for all real b. Show
that EŒ.x � b/2� is a minimum when b D E.X/.

12. Suppose that R.t/ D E.et.X�b// exists for a random variable X . Show that
Rm.0/ is the mth moment of the distribution about the point b, where m is a
positive integer.

13. Let 	.t/ D lnM.t/, where M.t/ is the moment generating function of a
distribution. Show that 	 0.0/ D � and 	 00.0/ D �2.

14. Suppose X is a random variable with mean � and variance �2, and assume that
the third moment EŒ.X � �/3� exists. The ratio EŒ.X � �/3�=�3 is a measure
of the skewness of the distribution. Graph the following pdfs and show that the
skewness is negative, zero, and positive respectively:

(a) f .x/ D .x C 1/=2, �1 < x < 1, 0 elsewhere.
(b) f .x/ D 1=2, �1 < x < 1, 0 elsewhere.
(c) f .x/ D .1 � x/=2, �1 < x < 1, 0 elsewhere.
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15. Suppose X is a random variable with mean � and variance �2, and assume that
the fourth moment EŒ.X ��/4� exists. The ratio EŒ.X ��/4�=�4 is a measure
of the kurtosis of the distribution. Graph the following pdfs and show that the
kurtosis is smaller for the first distribution

(a) f .x/ D 1=2, �1 < x < 1, 0 elsewhere.
(b) f .x/ D 3.1 � x2/=4, �1 < x < 1, 0 elsewhere.

2.6 Conditional Probability and Marginal
and Conditional Distributions

One is sometimes interested only in outcomes that are elements of a subset C1 of
the sample space C. Thus, the subset becomes effectively the new sample space.
Let P.C/ be the probability set function defined on C and let C1 � C such
that P.C1/ > 0. Suppose C2 � C. We want to define the probability of the
event C2 relative to the hypothesis of the event C1. This is called the conditional
probability of the event C2 relative to the event C1, or simply the conditional
probability of C2 given C1, denoted by P.C2jC1/. Specifically, we define P.C2jC1/
such that

P.C2jC1/ D P.C1 \ C2/
P.C1/

and P.C1/ > 0. We then have

1. P.C2jC1/ � 0.
2. P.C2 [ C3 [ � � � jC1/ D P.C2jC1/C P.C3jC1/C � � � , provided C2, C3; : : : are

mutually disjoint sets.
3. P.C1jC1/ D 1.

Properties (1) and (3) are obvious and (2) is an exercise. These properties of course
ensure that P.C2jC1/ is a probability set function defined for subsets of C1 – called
the conditional probability set function given C1.

Consider now a subset A of the event space A of one or more random variables
defined on the sample space C. If P is the probability set function of the induced
probability on A, and A1 � A and A2 � A, then the conditional probability of the
event A2 given the event A1 is

P.A2jA1/ D P.A2 \ A1/
P.A1/

provided P.A1/ > 0.
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Note that the above definition yields the multiplication rule for probabilities

P.C1 \ C2/ D P.C1/P.C2jC1/:

Example. Suppose we draw cards successively and randomly without replacement
from an ordinary deck of cards. Given that three spades were drawn in the first six
drawings, what is the probability that the seventh draw will yield a spade? Let C1
denote the event of three spades in the first six draws and C2 the event of a spade on
the seventh drawing. We want to compute P.C1 \ C2/. We therefore have

P.C1/ D

�
13

3

��
39

3

�

�
52

6

� ;

and

P.C2jC1/ D 10

46
:

Hence, using

P.C1 \ C2/ D P.C1/P.C2jC1/ ' 0:028:

Note that the multiplication rule can be extended to multiple events quite
straightforwardly. For three events, we have

P.C1 \ C2 \ C3/ D P Œ.C1 \ C2/ \ C3�
D P.C1 \ C2/P.C3jC1 \ C2/
D P.C1/P.C2jC1/P.C3jC1 \ C2/:

Let f .x1; x2/ be the joint pdf of two random variables X1 and X2. Consider the
event a < X1 < b, a < b. This event can occur when and only when a < X1 <

b,�1 < X2 < 1.

P.a < X1 < b;�1 < X2 < 1/ D
Z b

a

Z 1

�1
f .x1; x2/dx2dx1

for the continuous case (the extension to the discrete case is obvious). NowR1
�1 f .x1; x2/dx2 is a function of x1 only, say f1.x1/. Hence, for every a < b,

P.a < X1 < b/ D
Z b

a

f1.x1/dx1
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so that f1.x1/ is a function ofX1 only. f1.x1/ results from integrating (or summing)
the joint pdf f .x1; x2/ over all x2 for a fixed x1. The function f1.x1/ is called the
marginal pdf for X1. A marginal pdf for X2 is defined by

f2.x2/ D
Z 1

�1
f .x1; x2/dx1:

Example. Suppose the joint pdf of X1 and X2 is

f .x1; x2/ D
�
x1Cx2
8
; 0 � x1 � 2; 0 � x2 � 2

0; elsewhere

The marginal pdf of X1 is

f1.x1/ D
Z
f .x1; x2/dx2 D 1

8

Z 2

0

.x1 C x2/dx2 D x1 C 1

4
;

and the marginal pdf of X2 is

f2.x2/ D
Z
f .x1; x2/dx1 D 1

8

Z 2

0

.x1 C x2/dx1 D x2 C 1

4
:

Note that

Z 2

0

f1.x1/dx1 D 1 D
Z 2

0

f2.x2/dx2:

Example. Suppose the joint pdf of X1 and X2 is given by

f .x1; x2/ D
�
x1Cx2
21

; x1 D 1; 2; 3; x2 D 1; 2

0; elsewhere

We have, for example,

P.X1 D 3/ D f .3; 1/C f .3; 2/ D 3

7
and P.X2 D 2/

D f .1; 2/C f .2; 2/C f .3; 2/ D 4

7
:

The marginal pdf of X1 is

f1.x1/ D
2X

x2D1

x1 C x2

21
D 2x1 C 3

21
; x1 D 1; 2; 3
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and 0 elsewhere. The marginal pdf of X2 is

f2.x2/ D
3X

x1D1

x1 C x2

21
D 6C 3x2

21
; x2 D 1; 2

and 0 elsewhere. The preceding probabilities can be computed directly from the
marginals as P.X1 D 3/ D f1.3/ D 3

7
and P.X2 D 2/ D f2.2/ D 4

7
.

Consider now the moment generating function (if it exists) M.t1; t2/ D
E.et1XCt2Y /, t1, t2 finite, of the pdf f .x; y/ of the random variables X and Y .
The moment-generating function, like the single random variable case, completely
determines the joint distribution of X and Y , and hence the marginal distributions
of X and Y . This follows from

M.t1; 0/ D E.et1X / D M.t1/; and M.0; t2/ D E.et2Y / D M.t2/:

For continuous random variables,

@kCmM.t1; t2/
@tk1 t

m
2

D
Z 1

�1

Z 1

�1
xkymet1xCt2yf .x; y/dxdy;

implying that

@kCmM.t1; t2/
@tk1 t

m
2

ˇ
ˇ
ˇ
ˇ
t1Dt2D0

D
Z 1

�1

Z 1

�1
xkymf .x; y/dxdy D E.XkY m/:

This yields the following set of useful relations,

�1 D E.X/ D @M.0; 0/

@t1
; �2 D E.Y / D @M.0; 0/

@t2
I

�21 D E.X2/ � �21 D @2M.0; 0/

@t21
� �21I

�22 D E.Y 2/ � �22 D @2M.0; 0/

@t22
� �22I

EŒ.X � �1/.Y � �2/� D @2M.0; 0/

@t1@t2
� �1�2:

Thus, the covariance and correlation functions can be computed using the moment
generating function of the joint pdf.

Example. Continuous random variables X and Y have the joint pdf
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f .x; y/ D
�
e�y; 0 < x < y < 1;

0 elsewhere

The moment generating function is given by

M.t1; t2/ D
Z 1

0

Z 1

x

exp.t1x C t2y � y/dydx

D 1

.1 � t1 � t2/.1 � t2/ ;

provided t1 C t2 < 1 and t2 < 1. From the moment-generating formulae above, we
can derive (Exercise: Check)

�1 D 1; �2 D 2;

�21 D 1; �22 D 2;

EŒ.X � �1/.Y � �2/� D 1:

Hence, the correlation coefficient ofX and Y is � D 1=
p
2. The moment generating

functions of the marginal distributions of X and Y are

M.t1; 0/ D 1

1 � t1 ; t1 < 1I M.0; t2/ D 1

.1 � t2/2 ; t2 < 1:

The corresponding marginal pdfs are

f1.x/ D
� R1

x
e�ydy D e�x; 0 < x < 1

0 elsewhere
;

and

f2.y/ D
� R y

0
e�ydx D ye�y; 0 < y < 1

0 elsewhere
:

Let X1 and X2 denote continuous random variables with joint pdf f .x1; x2/ and
marginal pdfs f1.x1/ and f2.x2/. Provided f1.x1/ > 0, we define the conditional
pdf of the continuous random variable X2 as

f .x2jx1/ D f .x1; x2/

f1.x1/
:

It is easily seen that f .x2jx1/ has the properties of a pdf (Exercise: Check!), which
means that it can be used to compute probabilities and expectations. Thus, the
conditional probability that a < X2 < b, given that X1 D x1 is given by

P.a < X2 < bjX1 D x1/ D
Z b

a

f .x2jx1/dx2:
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Similarly, P.c < X1 < d jX2 D x2/ D P.c < X1 < d jx2/ D R d
c
f .x1jx2/dx1.

The expectation of the function u.X2/ of X2

EŒu.X2/jx1� D
Z 1

�1
u.x2/f .x2jx1/dx2

is the conditional expectation of u.X2/ given X1 D x1. Specifically, E.X2jx1/ is
the mean and E.ŒX2 � E.X2jx1/�2jx1/ the variance of the conditional distribution
of X2 given X1 D x1. These are sometimes referred to as the conditional mean and
variance. Obviously,

EŒ.X2 �E.X2jx1//2jx1� D E.X2
2 jx1/ � ŒE.X2jx1/�2:

Example. Suppose the random variables X1 and X2 have the joint pdf

f .x1; x2/ D
(
6x1; 0 < x1 < x2 < 1

0; elsewhere

The marginal pdfs are

f1.x1/ D
Z 1

x1

6x1dx2 D 6x1.1 � x1/; 0 � x1 � 1

f2.x2/ D
Z x2

0

6x1dx1 D 3x22; 0 � x2 � 1

Note that

Z 1

0

f1.x1/dx1 D
Z 1

0

6x1.1 � x1/dx1 D 1

Z 1

0

f2.x2/dx2 D
Z 1

0

3x22dx2 D 1:

The conditional pdf of X1 given X2 D x2 is

f .x1jx2/ D f .x1; x2/

f2.x2/
D 6x1

3x22
D 2x1

x22
;

and the conditional mean is

E.X1jx2/ D
Z x2

0

x1f .x1jx2/dx1 D
Z x2

0

2x21
x22
dx1 D 2

3
x2:
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Example. The random variables X1 and X2 have the joint pdf

f .x1; x2/ D
�
2; 0 < x1 < x2 < 1

0; elsewhere

The marginal pdfs are thus

f1.x1/ D
( R 1

x1
2dx2 D 2.1 � x1/; 0 < x1 < 1

0; elsewhere
;

and

f2.x2/ D
� R x2

0
2dx1 D 2x2; 0 < x2 < 1

0; elsewhere
:

The conditional pdf of X1, given X2 D x2, is

f .x1jx2/ D
(

2
2x2

D x�1
2 ; 0 < x2 < 1

0; elsewhere

The conditional mean and variance of X1 given X2 D x2 are therefore

E.X1jx2/ D
Z 1

�1
x1f .x1jx2/dx1

D
Z x2

0

x1

x2
dx1 D 1

2
x2; 0 < x2 < 1

and

E.ŒX1 �E.X1jx2/�2jx2/ D
Z x2

0

�

x1 � 1

2
x2

�2
x�1
2 dx1

D x22
12
; 0 < x2 < 1:

Note that

P.0 < X1 < 1=2jX2 D 3=4/ D
Z 1=2

0

f .x1j3=4/dx1 D
Z 1=2

0

4

3
dx1 D 2

3
;

and

P.0 < X1 < 1=2/ D
Z 1=2

0

f1.x1/dx1 D
Z 1=2

0

2.1 � x1/dx1 D 3

4
:
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The definitions introduced above are all extended in an obvious way to multi-
variables. Thus, for continuous random variables X1, X2; : : : ; Xn with the joint pdf
f .x1; x2; : : : ; xn/, we have the following definitions:

1. The marginal pdfs f1.x1/, f2.x2/ : : : ; fn.xn/ are defined by .n�1/-fold integrals

fi .xi / D
Z 1

�1
� � �
Z 1

�1
f .x1; x2; : : : ; xn/dx1 : : : dxi�1dxiC1 : : : dxn;

1 � i � n:

2. We can also define a marginal pdf of a set of k variables, k < n. For example,
suppose n D 4, i.e., X1, X2, X3, X4, and consider the subset <D X2 and X4, i.e.,
k D 2. The marginal pdf of X2 and X4 is the joint pdf of the two variables

Z 1

�1

Z 1

�1
f .x1; x2; x3; x4/dx1dx3:

This is extended in an obvious way to any subset of n random variables.
3. Provided fi .xi / > 0, the joint conditional pdf of X1; : : : ; Xi�1; XiC1; : : : Xn

given Xi D xi is

f .x1; : : : xi�1; xiC1; : : : xnjxi / D f .x1; : : : ; xn/

fi .xi /
:

4. As above, more generally, the joint conditional pdf of n � k of the variables for
given values of the remaining k variables is defined as the joint pdf of the n
variables divided by the marginal pdf of the group of k variables provided it is
positive.

5. Provided fi .xi / > 0, the conditional expectation of u.X1; : : : ; Xi�1;
XiC1; : : : Xn/ given Xi D xi is defined by

EŒu.X1; : : : ; Xi�1; XiC1; : : : Xn/jxi � D
Z 1

�1
� � �
Z 1

�1
u.x1; : : : ; xi�1; xiC1; : : : xn/

f .x1; : : : ; xnjxi /dx1; : : : dxi�1dxiC1 : : : dxn:

Corresponding definitions for discrete random variables X1, X2; : : : ; Xn with the
joint pdf f .x1; x2; : : : ; xn/ hold, now using sums instead of integrals.

Exercises

1. Consider the joint pdf

f .x1; x2/ D
�
1
4
x1.1C 3x22/; 0 < x1 < 2; 0 < x2 < 1

0; elsewhere
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Show that
R
f .x1; x2/dx1dx2 D 1. Find P Œ.X1;X2/ 2 A� where A D˚

f .x1; x2/j0 < x1 < 1; 14 < x2 < 1
2

�
. Determine f1.x1/, f2.x2/, f .x1jx2/, and

P.1=4 < X1 < 1=2jX2 D 1=3/.
2. The random variables X1 and X2 have the joint pdf

f .x1; x2/ D
�
x1 C x2; 0 < x1 < 1; 0 < x2 < 1

0; elsewhere

Find the conditional mean and variance of X2 given X1 D x1, 0 < x1 < 1.
3. Suppose the conditional pdf of X1 given X2 D x2 is

f .x1jx2/ D
(
c1

x1
x22
; 0 < x1 < x2; 0 < x2 < 1

0; elsewhere

and the marginal pdf of X2 is

f2.x2/ D
�
c2x

4
2; 0 < x2 < 1;

0; elsewhere

Find (i) the constants c1 and c2; (ii) the joint pdf of X1 and X2; (iii) P.1=4 <
X1 < 1=2jX2 D 5=8/; and (iv) P.1=4 < X1 < 1=2/.

4. Suppose that the joint pdf of X1 and X2 is

f .x1; x2/ D
�
cx21x2; x

2
1 � x2 < 1

0; elsewhere

Determine the value of the constant c and then P.X1 � X2/. Evaluate f1.x1/
and f2.x2/. (Hint: sketch the region where f .x1; x2/ � 0.)

5. Let 	.t1; t2/ 
 lnM.t1; t2/, where M.t1; t2/ is the moment generating function
of X and Y . Show that

@	.0; 0/

@tk
;

@2	.0; 0/

@t2k
.k D 1; 2/;

@2	.0; 0/

@t1@t2
;

yields the means, the variances, and the covariance of the two random variables.
6. Given the joint pdf of X1 and X2,

f .x1; x2/ D
�
21x21x

3
2 ; 0 < x1 < x2 < 1;

0 elsewhere

find the conditional mean and variance of X1 given X2 D x2, 0 < x2 < 1.
7. Five cards are drawn at random without replacement from a deck of cards.

The random variables X1, X2, and X3 denote the number of spades, the
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number of hearts, and the number of diamonds that appear among the 5 cards
respectively. Determine the joint pdf of X1, X2, and X3. Find the marginal pdfs
of X1, X2, and X3. What is the joint conditional pdf of X2 and X3 given that
X1 D 3?

8. Suppose that the joint pdf of X and Y is given by

f .x; y/ D
�
2; 0 < x < y; 0 < y < 1;

0; elsewhere.
:

Show that the conditional means are .1C x/=2, 0 < x < 1 and y=2, 0 < y < 1,
and the correlation function of X and Y is � D 1=2. Show also that the variance
of the conditional distribution of Y given X D x is .1 � x/2=12, 0 < x < 1,
and that the variance of the conditional distribution of X given Y D y is y2=12,
0 < y < 1.

9. Let f .t/ and F.t/ be the pdf and distribution function of the random variable T .
The conditional pdf of T given T > t0, t0 a fixed time, is defined by f .t jT >

t0/ D f .t/=Œ1 � F.t0/�, t > t0, 0 elsewhere. This kind of pdf is used in survival
analysis i.e., problems of time until death, given survival until time t0. Show that
f .t jT > t0/ is a pdf. Let f .t/ D e�t . 0 < t < 1, 0 elsewhere, and compute
P.T > 2jT > 1/.

2.7 Stochastic Independence

Consider two random variables X1 and X2 with joint pdf f .x1; x2/. The joint pdf
may be expressed as

f .x1; x2/ D f .x2jx1/f1.x1/:

Suppose that f .x2jx1/ does not depend on x1. Then the marginal pdf of X2
(assuming X2 is continuous) is

f2.x2/ D
Z 1

�1
f .x2jx1/f1.x1/dx1

D f .x2jx1/
Z 1

�1
f1.x1/dx1

D f .x2jx1/:

Hence,

f2.x2/ D f .x2jx1/ and f .x1; x2/ D f1.x1/f2.x2/;
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when f .x2jx1/ is independent of x1. Thus, if the conditional distribution ofX2 given
X1 D x1 is independent of x1, then f .x1; x2/ D f1.x1/f2.x2/.

Definition. Let the random variables X1 and X2 have the joint pdf f .x1; x2/
and marginal pdfs f1.x1/ and f2.x2/. Then the random variables X1 and X2 are
stochastically independent if and only if f .x1; x2/ D f1.x1/f2.x2/. Otherwise,
they are stochastically dependent.

Example. Let the joint pdf of the random variables X1 and X2 be

f .x1; x2/ D
�
1
2
; 0 � x1 � 2; 0 <� x2 � 1;

0; elsewhere.
:

The marginal pdfs are

f1.x1/ D
Z 1

0

1

2
dx2 D 1

2
; 0 � x1 � 2

f2.x2/ D
Z 2

0

1

2
dx1 D 1; 0 � x2 � 1

and 0 elsewhere. Thus,

f .x1; x2/ D 1

2
� 1 D 1

2

implies that the random variables X1 and X2 are stochastically independent.

Example. Consider the random variables X1 and X2 with joint pdf

f .x1; x2/ D
�
12x1x2.1 � x2/; 0 < x1 < 1; 0 < x2 < 1;

0; elsewhere.
:

Since the marginal pdfs are given by

f1.x1/ D
Z 1

0

12x1x2.1 � x2/dx2 D 2x1I

f2.x2/ D
Z 1

0

12x1x2.1 � x2/dx1 D 6x2.1 � x2/;

we have f .x1; x2/ D f1.x1/f2.x2/ and thus that X1 and X2 are stochastically
independent.

Some useful theorems follow. These (i) provide a means of determining whether
random variables are stochastically independent without computing the marginal
pdfs; and (ii) show that the product property of independence carries over to
probabilities, expectations, and moment generating functions.
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Theorem. Let the random variables X1 and X2 have joint pdf f .x1; x2/. Then X1
and X2 are stochastically independent if and only if

f .x1; x2/ 
 g.x1/h.x2/;

where g.x1/ > 0, 8x1 2 A1; 0 elsewhere, and h.x2/ > 0, 8x2 2 A2; 0 elsewhere.

Proof. IfX1 andX2 are stochastically independent, then f .x1; x2/ D f1.x1/f2.x2/,
where f1.x1/ and f2.x2/ are marginal pdfs. Thus the condition f .x1; x2/ D
g.x1/h.x2/ holds.

Conversely, if f .x1; x2/ D g.x1/h.x2/ holds, then

f1.x1/ D
Z 1

�1
g.x1/h.x2/dx2 D g.x1/

Z 1

�1
h.x2/dx2 D c1g.x1/;

and

f2.x2/ D
Z 1

�1
g.x1/h.x2/dx1 D h.x2/

Z 1

�1
g.x1/dx1 D c2h.x2/:

Here c1 and c2 are constants. However,

Z 1

�1

Z 1

�1
f .x1; x2/dx1dx2 D 1 D

Z 1

�1
g.x1/dx1

Z 1

�1
h.x2/dx2 D c1c2:

Hence

f .x1; x2/ 
 g.x1/h.x2/ D f1.x1/f2.x2/;

andX1 andX2 are stochastically independent. The related proof for discrete random
variables is similar.

Theorem. If X1 and X2 are stochastically independent random variables with
marginal pdfs f1.x1/ and f2.x2/, then

P.a < X1 < b; c < X2 < d/ D P.a < X1 < b/P.c < X2 < d/;

for all constants a, b, c, d satisfying a < b and c < d .

Proof.

P.a < X1 < b; c < X2 < d/ D
Z b

a

Z d

c

f1.x1/f2.x2/dx1dx2

D
Z b

a

f1.x1/dx1

Z d

c

f2.x2/dx2

D P.a < X1 < b/P.c < X2 < d/:
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Theorem. Suppose X1 and X2 are stochastically independent random variables
with marginal pdfs f1.x1/ and f2.x2/, and u.X1/ and v.X2/ are functions ofX1 and
X2 respectively. Then, the expectation

EŒu.X1/v.X2/� D EŒu.X1/�EŒv.X2/�:

Proof. This follows immediately from the definition of stochastic independence.

EŒu.X1/v.X2/� D
Z 1

�1

Z 1

�1
u.x1/v.x2/f1.x1/f2.x2/dx1dx2

D
Z 1

�1
u.x1/f1.x1/dx1

Z 1

�1
v.x2/f2.x2/dx2

D EŒu.X1/�EŒv.X2/�:

Example. Suppose X and Y are stochastically independent random variables with
means �1 and �2 and variances �21 and �22 respectively. Then, we have the
important result that the correlation coefficient of X and Y is zero because the
covariance

�12 D EŒ.X � �1/.Y � �2/�
�1�2

D EŒ.X � �1/�EŒ.Y � �2/�
�1�2

D 0:

Theorem. Suppose X1 and X2 are stochastically independent random variables
with joint pdf f .x1; x2/ and marginal pdfs f1.x1/ and f2.x2/. If the moment gener-
ating function M.t1; t2/ of the distribution exists, then X1 and X2 are stochastically
independent if and only if M.t1; t2/ D M.t1; 0/M.0; t2/.

Proof. If X1 and X2 are stochastically independent, then

M.t1; t2/ D E.et1X1Ct2X2/

D E.et1X1et2X2/

D E.et1X1/E.et2X2/ D M.t1; 0/M.0; t2/:

Hence, stochastic independence of X1 and X2 implies that the moment generating
function factors into a product of the two marginal moment generating functions of
the marginal distributions.

Suppose now instead that M.t1; t2/ D M.t1; 0/M.0; t2/. Since

M.t1; 0/ D
Z 1

�1
et1x1f1.x1/dx1 and M.0; t2/ D

Z 1

�1
et2x2f2.x2/dx2;
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we have

M.t1; 0/M.0; t2/ D
Z 1

�1
et1x1f1.x1/dx1

Z 1

�1
et2x2f2.x2/dx2

D
Z 1

�1

Z 1

�1
et1x1Ct2x2f1.x1/f2.x2/dx1dx2

D M.t1; t2/:

But

M.t1; t2/ D
Z 1

�1

Z 1

�1
et1x1Ct2x2f .x1; x2/dx1dx2;

which implies that

f .x1; x2/ D f1.x1/f2.x2/;

and hence thatX1 andX2 are stochastically independent random variables. The case
for discrete random variables is similar.

The n random variables X1;X2; : : : ; Xn, with joint pdf f .x1; x2; : : : ; xn/ and
marginal pdfs f1.x1/; f2.x2/; : : : ; fn.xn/, are mutually stochastically independent
if and only if f .x1; x2; : : : ; xn/ D f1.x1/f2.x2/ : : : fn.xn/. The theorems above
can be suitably generalized.

Exercises

1. Let the joint pdf of X1 and X2 be

f .x1; x2/ D
�
x1 C x2; 0 < x1 < 1; 0 < x2 < 1;

0; elsewhere.
:

Show that the random variables X1 and X2 are stochastically dependent.
2. Show that the random variables X and Y with joint pdf

f .x; y/ D
�
2e�x�y; 0 < x < y; 0 < y < 1;

0; elsewhere.
;

are stochastically dependent.
3. Consider the joint pdf of random variables X and Y ,

f .x; y/ D
(

x.1C3y2/
4

; 0 < x < 2; 0 < y < 1;

0; elsewhere.
:

Are the random variables X and Y stochastically independent? Compute f .xjy/
and hence P.1=4 < X < 1=2jY D 3/.
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4. The random variables X and Y have joint pdf

f .x; y/ D
�
4x.1 � y/; 0 < x < 1; 0 < y < 1;

0; elsewhere.
:

Find P.0 < X < 1=3; 0 < Y < 1=3/.
5. Let X1, X2, and X3 be three stochastically independent random variables, each

with pdf

f .x/ D
�
e�x; x > 0;
0; elsewhere

:

Find P.X1 < 2; 1 < X2 < 3;X3 > 2/.
6. Show that the random variables X and Y with joint pdf

f .x; y/ D
�
e�x�y; 0 < x < 1; 0 < y < 1;

0; elsewhere
;

are stochastically independent, and that

E.et.XCY // D .1 � t /�2; t < 1:

2.8 Particular Distributions

We consider three of the most important probability distribution functions, the bino-
mial distribution, the Poisson distribution, and the normal or Gaussian distribution,
and the latter’s connection to the Maxwell-Boltzmann distribution.

2.8.1 The Binomial Distribution

The binomial theorem is expressed as

.aC b/n D
nX

xD0

�
n

x

�

bxan�x;
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for n > 0 an integer. Recall,

�
n

x

�

D nŠ
xŠ.n�x/Š By analogy, introduce the function

f .x/ D
�
n

x

�

px.1 � p/n�x; x D 0; 1; 2; 3; : : : ; n

D 0 elsewhere

for n > 0 an integer and 0 < p < 1. Clearly, f .x/ � 0 and

X

x

f .x/ D
nX

xD0

�
n

x

�

px.1 � p/n�x D Œ.1 � p/C p�n D 1:

Hence, the function f .x/ is the pdf of a discrete random variable X . A random
variable with this pdf has a binomial distribution, and f .x/ is a binomial pdf. n and
p are the parameters of the binomial distribution, often denoted by B.n; p/. For
example, B.4; 1=3/ has the binomial pdf

f .x/ D
�
4

x

��
1

3

�x �
2

3

�4�x
; x D 0; 1; 2; 3; 4

D 0 elsewhere

The binomial distribution is a very useful model for any experiment or system
that admits an outcome drawn from two possibilities only, such as heads or tails in a
coin toss, life or death, red or green, etc. If the experiment is repeated n independent
times or a system produces n independent outcomes and the probability of “success”
is p on each occasion, then the probability for “failure” is 1�p. Define the random
variable Xi , i D 1; 2 : : : ; n to be 0 if the outcome of the i th performance is a failure
and 1 if the outcome is a success. Thus P.Xi D 0/ D 1 � p and P.Xi D 1/ D p,
i D 1; 2 : : : ; n. The random variables Xi are mutually stochastically independent
since the experiment is repeated n independent times. Y D X1 C X2 C � � � C Xn
is the number of successes through the n repetitions of the experiment. Let y be
an element of the set fy W y D 0; 1; 2; : : : ; ng. Then Y D y if and only if y of
the random variables Xi have the value 1 and n � y have value 0. The number of

combinations of y 1’s that can be assigned to the Xi is just

�
n

y

�

. The probability

for each of these possible combinations is simply py.1 � p/n�y because the Xi

are mutually stochastically independent. The P.Y D y/ is the sum of the

�
n

y

�

mutually exclusive events, i.e.,

�
n

y

�

py.1 � p/n�y; y D 0; 1; 2; 3; : : : ; n

and 0 elsewhere. This is the pdf of a binomial distribution.
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The moment generating function can be evaluated from

M.t/ D
X

x

etxf .x/ D
nX

xD0
etx
�
n

x

�

px.1 � p/n�x

D
nX

xD0

�
n

x

�
�
pet

�x
.1 � p/n�x

D 	
.1 � p/C pet


n
; 8t 2 <:

The mean and variance are therefore

M 0.t/ D n
	
.1 � p/C pet


n�1
pet H) � D M 0.0/ D np;

and

M 00.t/ D n
	
.1 � p/C pet


n�1
pet C n.n � 1/ 	.1 � p/C pet


n�2 �
pet

�2

H) �2 D M 00.0/ � �2 D np C n.n � 1/p2 � n2p2 D np.1 � p/:

Example. The binomial distribution with pdf

f .x/ D
�
4

x

��
1

2

�x �
1

2

�4�x
; x D 0; 1; 2; 3; 4

D 0 elsewhere

and random variable X has moment generating function

M.t/ D
�
1

2
C 1

2
et
�4
;

and mean � D np D 2 and variance �2 D np.1 � p/ D 1. We can compute, for
example,

P.0 � X � 1/ D
1X

xD0
f .x/ D 1

16
C 4

16
D 5

16
;

and

P.X D 3/ D f .3/ D 4Š

3Š1Š

�
1

2

�3 �
1

2

�1
D 1

4
:
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Exercises

1. If the moment generating function of a random variable X is

�
1

3
C 2

3
et
�5

find P.X D 2 or 3/.
2. The moment generating function of a random variable X is

�
2

3
C 1

3
et
�9
:

Show that

P.� � 2� < X < �C 2�/ D
5X

xD1

�
9

x

��
1

3

�x �
2

3

�9�x
:

3. The probability that a patient recovers from heart surgery is 0.4. If 15 people
have had heart surgery, what is the probability that (i) at least 10 survive, (ii)
from 3 to 8 survive, (iii) exactly 5 survive? Using Chebyshev’s inequality, find
and interpret the interval �˙ 2� .

4. If the random variable X has a binomial distribution with parameters n and p,
show that

E

�
X

n

�

D p and E

"�
X

n
� p

�2#

D p.1 � p/
n

:

2.8.2 The Poisson Distribution

For all values of p, the series

1C p C p2

2Š
C p3

3Š
C � � � D

1X

xD0

px

xŠ
; x D 0; 1; 2; : : :

converges to ep . This motivates the introduction of the function f .x/

f .x/ D pxe�p

xŠ
; x D 0; 1; 2; : : :

D 0; elsewhere 8p > 0:
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Since p > 0, f .x/ � 0 and

X

x

f .x/ D
1X

xD0

pxe�p

xŠ
D e�p

1X

xD0

px

xŠ
D e�pep D 1:

Hence, f .x/ is a pdf of a discrete random variable. A random variable X that has
the pdf f .x/ is a Poisson distribution and f .x/ is a Poisson pdf.

Examples of Poisson distributions include the random variable X that denotes
the number of alpha particles emitted by a radioactive substance that enter some
region in a prescribed time interval, or the number of defects in a manufactured
article. Even the number of automobile accidents during some unit time is often
assumed to be random variable with a Poisson distribution. A process that leads to
a Poisson distribution is called a Poisson process. The assumptions that underly a
Poisson process are essentially that the probability of a change during a sufficiently
short interval is independent of changes in other non-overlapping intervals, and is
approximately proportional to the length of the interval, and the probability of more
than one change during a short interval is essentially zero. One can formalize these
assumptions and derive a simple ordinary differential equation that shows that the
probability of changes X in an interval of some length has a Poisson distribution.

The moment generating function of a Poisson distribution is

M.t/ D
X

x

etxf .x/ D
1X

xD0
etx
pxe�p

xŠ

D e�p
1X

xD0

.pet /
x

xŠ

D e�pepet D ep.e
t�1/; 8t 2 <

The mean and variance are found to be

M 0.t/ D exp
	
p
�
et � 1�
pet H) � D M 0.0/ D p

M 00.t/ D exp
	
p
�
et � 1�
pet C exp

	
p
�
et � 1�
 �pet �2

H) �2 D M 00.0/ � �2 D p C p2 � p2 D p;

i.e., a Poisson distribution has � D �2 D p > 0. This allows us to express the
Poisson pdf as

f .x/ D �xe��

xŠ
; x D 0; 1; 2; : : :

D 0 elsewhere 8� > 0:
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Example. Consider a random variable X with a Poisson distribution with � D 3

and �2 D 3, i.e.,

f .x/ D 3xe�3

xŠ
; x D 0; 1; 2; : : :

D 0 elsewhere:

For example,

P.1 � X/ D 1 � P.X D 0/ D 1 � f .0/ D 1 � e�3 D 0:95:

Example. If the moment generating function of a random variable X is

M.t/ D exp
	
2
�
et � 1�
 ;

then X has a Poisson distribution with � D 2. For example,

P.X D 3/ D f .3/ D 23e�2

3Š
D 4

3
e�2 D 0:18:

Example. The average number of radioactive particles passing through a counter
during 1 millisecond in an experiment is 4. What is the probability that six particles
enter the counter in a given millisecond?

We may assume a Poisson distribution with x D 6 and � D 4, so that

f .6/ D 46e�4

6Š
D 0:104:

Exercises

1. If the random variable X has a Poisson distribution such that P.X D 1/ D
P.X D 2/, find P.X D 4/.

2. Given that M.t/ D exp Œ4 .et � 1/� is the moment generating function of a
random variable X , show that P.� � 2� < X < �C 2�/ D 0:931.

3. Suppose that during a given rush hour Wednesday, the number of accidents on a
certain stretch of highway has a Poisson distribution with mean 0.7. What is the
probability that there will be at least three accidents on that stretch of highway at
rush hour on Wednesday?

4. Compute the measures of skewness and kurtosis of the Poisson distribution with
mean �.

5. Suppose the random variables X and Y have the joint pdf

f .x; y/ D e�2

xŠ.y � x/Š ; y D 0; 1; 2; : : : I x D 0; 1; : : : ; y;

D 0; elsewhere:
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(i) Find the moment generating function M.t1; t2/ of the joint pdf. (ii) Compute
the means, variances, and correlation coefficient of X and Y . (iii) Determine the
conditional mean E.X jy/.

2.8.3 The Normal or Gaussian Distribution

Known by both terms, depending on the context (mathematical statistics, plasma
physics, statistical physics), this is the most familiar and important of the many
distribution functions that exist. We can evaluate the integral

I D
Z 1

�1
exp

��x2=2� dx;

by noting that I > 0 and that I 2 may be written as

I 2 D
Z 1

�1

Z 1

�1
exp

�

�x
2 C y2

2

�

dxdy:

Introducing polar coordinates x D r cos 
 and y D r sin 
 yields

I 2 D
Z 2�

0

Z 1

0

e�r2=2rdrd
 D
Z 2�

0

d
 D 2�;

which shows that I D p
2� and so

1p
2�

Z 1

�1
exp

��x2=2� dx D 1:

If we replace x by

x � a
b

; b > 0;

we have

1

b
p
2�

Z 1

�1
exp

�

� .x � a/2
2b2

�

dx D 1:

Consequently, since b > 0, the function

f .x/ D 1

b
p
2�

exp

�

� .x � a/2
2b2

�

; �1 < x < 1;
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is the pdf of a continuous random variable, and the random variable has a normal or
Gaussian distribution and f .x/ is a normal pdf.

The moment generating function for a normal distribution is

M.t/ D 1

b
p
2�

Z 1

�1
etx exp

�

� .x � a/2
2b2

�

dx

D 1

b
p
2�

Z 1

�1
exp

�

��2b2tx C x2 � 2ax C a2

2b2

�

dx

D exp

�

�a
2 � .aC b2t/2

2b2

�
1

b
p
2�

Z 1

�1
exp

�

� .x � a � b2t/2
2b2

�

dx

D exp

�

at C b2t2

2

�

;

after completing the square and since the last integrand is a normal distribution with
aC b2t . The mean and variance can then be computed as

M 0.t/ D M.t/.aC b2t/ H) � D M 0.0/ D a;

and

M 00.t/ D M.t/b2 CM.t/.aC b2t/2;

H) �2 D M 00.0/ � �2 D b2 C a2 � a2 D b2:

The normal or Gaussian pdf can therefore be written as

f .x/ D 1

�
p
2�

exp

�

� .x � �/2
2�2

�

; �1 < x < 1;

and the moment generating function as

M.t/ D exp

�

�t C �2t2

2

�

:

Example. If X has the moment generating function

M.t/ D exp
�
3t C 16t2

�
;

then X is normally distributed with mean � D 3 and variance �2 D 32.

The normal distribution is often expressed simply as n.�; �2/, thus, for example,
n.0; 1/ implies the pdf of X has mean 0 and variance 1 and is given by
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f .x/ D 1p
2�
e�x2=2; �1 < x < 1; M.t/ D et

2=2:

The graph of the normal distribution is the familiar “bell shape,” symmetric about
x D � with a maximum there of 1=�

p
2� . There are points of inflection at x D

�˙ � (Exercise: Check!).
A useful “renormalization” of the Gaussian distribution is the following

Theorem. If the random variable X is n.�; �2/, �2 > 0, then the random variable
W D .X � �/=� is n.0; 1/.

Proof. Since �2 > 0, the distribution function G.w/ of W is

G.w/ D P

�
X � �
�

� w

�

D P.X � w� C �/;

which corresponds to

G.w/ D 1

�
p
2�

Z w�C�

�1
exp

�

� .x � �/2
2�2

�

dx:

On setting y D .x � �/=� , we have

G.w/ D 1p
2�

Z w

�1
e�y2=2dy;

implying that the pdf g.w/ D G0.w/ of the continuous random variable W is

g.w/ D 1p
2�
e�w2=2;

meaning that W is n.0; 1/,

This theorem is very useful for calculating probabilities of normally distributed
variables. Suppose X is n.�; �2/. Then if a < b, we have

P.a < X < b/ D P.X < b/ � P.X < a/

D P

�
X � �
�

<
b � �
�

�

� P
�
X � �
�

<
a � �
�

�

D 1p
2�

Z .b��/=�

�1
e�w2=2dw � 1p

2�

Z .a��/=�

�1
e�w2=2dw

because W D .X � �/=� is n.0; 1/. Integrals of this form cannot be evaluated so
tables are used, based on the n.0; 1/ distribution i.e., if

N.x/ 
 1p
2�

Z x

�1
e�w2=2dw;
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and X is n.�; �2/, then

P.a < X < b/ D P

�
X � �
�

<
b � �
�

�

� P
�
X � �
�

<
a � �
�

�

D N

�
b � �
�

�

�N
�a � �

�

�
:

Note that it can be shown that N.�x/ D 1 �N.x/.
Example. For X n.2; 25/,

P.0 < X < 10/ D N

�
10 � 2
5

�

�N
�
0 � 2
5

�

D N.1:6/ �N.�0:4/ D 0:945 � .1 � 0:655/ D 0:600

where the last steps involved looking up a table of normal values. In similar
fashion,

P.� � 2� < X < �C 2�/ D N

�
�C 2� � �

�

�

�N
�
� � 2� � �

�

�

D N.2/ �N.�2/ D 0:977 � .1 � 0:977/ D 0:954:

Exercises

1. If

N.x/ D 1p
2�

Z x

�1
e�y2=2dy;

show that N.�x/ D 1 �N.x/.
2. If X is n.75; 100/, find P.X < 60/ and P.70 < X < 100/.
3. If X is n.�; �2/, find a so that P.�a < .X � �/=� < a/ D 0:90.
4. If X is n.�; �2/, show that E.jX � �j/ D �

p
2=� .

5. Show that the pdf n.�; �2/ has points of inflection at x D �˙ � .
6. Suppose a random variable X has pdf

f .x/ D 2p
2�
e�x2=2; 0 < x < 1

D 0; elsewhere:

Find the mean and variance of X .
7. Let X1 and X2 be two stochastically independent normally distributed random

variables with means �1 and �2 and variances �21 and �22 . Show that X1 CX2 is
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normally distributed with mean .�1 C�2/ and variance .�21 C�22 /. (Hint: use the
uniqueness of the moment generating function.)

8. Compute P.1 < X2 < 9/ if X is n.1; 4/.
9. Suppose the random variable X is normally distributed with n.�; �2/. What will

the distribution be if �2 D 0?

2.9 The Central Limit Theorem

The central limit theorem shows that under certain conditions, probability distribu-
tions will converge to the normal or Gaussian distribution. We will show briefly the
relationship to the Maxwell-Boltzmann distribution. Many different versions exist
with different conditions and convergence properties. We will describe the simplest
(and most restrictive) version.

Before establishing the central limit theorem, we will need the following useful
result. Consider a limit of the form

lim
n!1

�

1C a

n
C �.n/

n

�bn
;

for a and b independent of n and where limn!1 �.n/ D 0. Then

lim
n!1

�

1C a

n
C �.n/

n

�bn
D lim

n!1
h
1C a

n

ibn D eab:

For example,

lim
n!1

�

1 � w2

n
C w

n4

�2n
D lim

n!1

�

1C �w2

n
C w=n3

n

�2n
D e�2w2 ;

for all fixed values of w.

Theorem. Suppose that Xi , i D 1; 2; : : : ; n is a random sample from a dis-
tribution that has mean � and variance �2. Then the random variable Yn D�Pn

iD1 Xi � n�� =pn� D p
n
� NXn � �� =� has a limiting distribution that is

normal with mean 0 and variance 1.

Comment By establishing this theorem, the central limit theorem, it implies
that whenever the conditions of the theorem are satisfied, the random variablep
n
� NXn � �� =� has, for a fixed n, an approximate normal distribution with � D 0

and �2 D 1.
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Proof. Let us assume the existence of a moment generating function M.t/ D
E.etX/ for finite values of t for the distribution. (An alternative more general proof
would be based on the characteristic function �.t/ D E.eitX / instead.) Introduce
the moment generating function for X � �,

m.t/ 
 E
�
et.X��/� D e��tM.t/:

Hence, m.0/ D 1, m0.0/ D E.X � �/ D 0, m00.0/ D EŒ.X � �/2� D �2. The
function m.t/ can be expanded using Taylor’s formula, for 0 < � < t , such that

m.t/ D m.0/Cm0.0/t C 1

2
m00.�/t2

D 1C 1

2
m00.�/t2

D 1C 1

2
�2t2 C 1

2

�
m00.�/ � �2� t 2:

Now consider M.t In/, where

M.t In/ D E

�

exp

�

t

P
Xi � n�
�

p
n

��

D E

�

exp

�

t
X1 � �
�

p
n

�

exp

�

t
X2 � �
�

p
n

�

� � � exp

�

t
Xn � �
�

p
n

��

D E

�

exp

�

t
X1 � �
�

p
n

��

E

�

exp

�

t
X2 � �
�

p
n

��

� � �E
�

exp

�

t
Xn � �
�

p
n

��

D
�

E

�

exp

�

t
X � �
�

p
n

��
 n

D
�

m

�
t

�
p
n

��n
:

Hence,

m

�
t

�
p
n

�

D 1C t 2

2n
C
�
m00.�/ � �2� t 2

2n�2
; 0 < � <

t

�
p
n
:

Thus,

M.t In/ D
"

1C t 2

2n
C
�
m00.�/ � �2� t 2

2n�2

#n

:

Since m00.t/ is continuous at t D 0, and since � ! 0 as n ! 1, we have
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lim
n!1

�
m00.�/ � �2� D 0:

Hence, using the result above, a D t 2=2 and b D 1, and so

lim
n!1M.t In/ D et

2=2 8t 2 <:

It therefore follows that the random variable Yn D p
n
� NXn � �� =� has a limiting

normal distribution with � D 0 and variance �2 D 1.

Example. Suppose NX denotes the mean of a random sample of size 75 from a
distribution that has the pdf

f .x/ D 1; 0 < x < 1

D 0; elsewhere.

Hence, � D 1=2 and �2 D 1=12. The limiting distribution of Yn Dp
n
� NXn � �� =� is normally distributed, allowing us to compute for example the

P.0:45 < NX < 0:55/ by means of

P.0:45 < NX < 0:55/ D P

"p
n.0:45 � �/

�
<

p
n. NXn � �/

�
<

p
n.0:55 � �/

�

#

D P

"p
75.0:45 � 1=2/
p
1=12

<

p
75. NXn � 1=2/
p
1=12

<

p
75.0:55 � 1=2/
p
1=12

#

D P Œ�1:5 < 30. NX � 1=2/ < 1:5� D 0:866:

Example. Suppose Xi , i D 1; 2; : : : ; n is a random sample from a binomial
distribution B.n; p/ D B.1; p/ i.e., � D np D p and �2 D p.1 � p/, and M.t/
exists 8t 2 <. If Yn D X1 C X2 C � � � C Xn, we know that Yn is B.n; p/. We
can use

YN � np
p
np.1 � p/ D n. NXn � p/

p
np.1 � p/ D

p
n. NXn � �/

�

as a limiting distribution with mean 0 and variance 1. Suppose n D 100 and
p D 1=2, and that we want to compute P.Y D 48; 49; 50; 51; 52/. Since Y is a
discrete random variable, the events Y D 48; 49; 50; 51; 52 and 47:5 < Y < 52:5

are equivalent (using the convention of taking 0.5 above and below the limiting
discrete values). So instead we compute P.47:5 < Y < 52:5/. Thus, with
� D np D 50 and �2 D np.1 � p/ D 25, we have
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P.47:5 < Y < 52:5/ D P

�
47:5 � 50

5
<
Y � 50
5

<
52:5 � 50

5

�

D P

�

�0:5 < Y � 50
5

< 0:5

�

D 0:382

since .Y � 50/=5 has an approximately normal distribution.

There are many examples of stochastic variables whose values are determined by
independent additive increments. The best known example of such a variable may
be the momentum of a molecule in a dilute gas. At a given time, the x momentum
mvx is the vector sum of all momentum increments caused by past collisions with
other molecules. If we suppose that the increments in mvx are independent with
zero mean, we may conclude from the central limit theorem that vx is normally
distributed, i.e.,

f .vx/ D 1p
2�kT

exp

�

� v2x
2kT

�

;

where k is Boltzmann’s constant and T is the temperature. Similarly, we may
argue that the y and z momenta are independent of the x momentum, and that the
increments in the three directions are independent. Hence the y and z velocities also
have normal or Gaussian distributions. The joint pdf f .vx; vy; vz/ of the independent
velocities is therefore the product

f .vx; vy; vz/ D f .vx/f .vy/f .vz/ D
�

1

2�kT

�3=2
exp

 

�v2x C v2y C v2z
2kT

!

:

By introducing spherical coordinates in velocity space with c2 D v2x C v2y C v2z , we
obtain the Maxwell-Boltzmann distribution

f .c/ D 4�

�
1

2�kT

�3=2
c2 exp

�

� c2

2kT

�

:

The Maxwell-Boltzmann distribution for the gas is a consequence of the indepen-
dence of the successive collisions experienced by a molecule. The three components
are identically distributed because there is no preferred direction. This can be
different for a magnetized flow in the presence of a large-scale or mean magnetic
field. The distributions have a zero mean because the gas is at rest with respect to
the chosen coordinate system. A mean flow will introduce an offset in the normal
distribution.

Velocities in a turbulent fluid flow do not have a normal distribution because
the momentum increments that a fluid parcel experiences at successive times
are not necessarily independent. For example, eddies tend to be coherent and
interact in sometimes complicated ways with other fluid particles. However, at
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some scales, the local motions may be nearly independent. Consequently, tur-
bulent velocity fields are not Gaussian, although often not very different from
having a Gaussian distribution. This difference is a fundamental property of the
dynamics of turbulence. To analyze the dynamics of turbulence, non-Gaussian
properties do need to be included typically, but if one is concerned primarily with
the effects of turbulence, assuming a Gaussian distribution may be an adequate
approximation.

Exercises

1. Compute an approximate probability that the mean of a random sample of size
15 from a distribution having pdf

f .x/ D 3x2; 0 < x < 1;

D 0; elsewhere

is between 3/5 and 4/5.
2. Let Y be B.72; 1=3/. Approximate P.22 � Y � 28/.

2.10 Relation Between Microscopic and Macroscopic
Descriptions: Particles, the Gibbs Ensemble,
and Liouville’s Theorem

A gas of particles or plasma of charged particles are both characterized by a very
large number of degrees of freedom. One can in principle describe the system in
terms the spatial and momentum coordinates of each of the particles in the system.
By contrast, a macroscopic description, such as a fluid mechanical model, may have
as few as three variables (the density, the velocity, the pressure or the temperature),
depending on the closure assumptions imposed. The statistical treatment of the same
system may require as many as 6N variables, where N is the number of particles in
the system. These variables are the 3N spatial coordinates x1; x2; � � � xN 
 .x/ and
the 3N conjugate momenta p1;p2; � � � pN 
 .p/ of the constituent particles. This of
course neglects effects specific to the particles themselves and treats the particles as
point masses. A typical system can be described in terms of a Hamiltonian function
H Œ.x/; .p/�, where

H Œ.x/; .p/� D E Œ.x/; .p/� :

In the absence of external fields,E Œ.x/; .p/� denotes the total energy, kinetic energy,
and potential energy of the system. The equations of motion for the system are given
by Hamilton’s equations
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dxi
dt

D Pxi D @H

@pi

dpi
dt

D Ppi D �@H
@xi

; i D 1; 2; � � � ; N:

The state of the system at any time is given by a representative point in the
6N dimensional phase space (also called the � space) defined by the mutually
orthogonal vectors x1, x2, � � � xN , p1, p2, � � � pN . Thus, for a given set of initial
conditions, the trajectories of a particular system can be computed. Note that the
Hamiltonian does not depend on time and so the equations of motion above are
invariant under time reversal.

It is evident that a very large number of states of a gas corresponds to a
particular macroscopic state of a gas e.g., a gas of a particular density contained
in a box of fixed volume can be formed in an infinite number of ways according
to the distribution of the particles in space.1 However, macroscopically we cannot
distinguish between one representative point or another i.e., between gases existing
in different states. A gas that can be described by certain macroscopic conditions
refers therefore to an infinite number of states and not to a single state. Thus,
instead of considering a single system, we may consider a collection of systems that
are identical in composition and macroscopic conditions but existing in different
states. Such a collection of systems is called a Gibbs ensemble, and is the collection
of systems that is microscopically equivalent to the system we are considering
macroscopically. Each system in the ensemble can be represented by a point in
phase space. As the number of systems becomes very large, the representative points
become increasingly dense in phase space and we can describe their distribution in
phase space by a density function. The density function is a continuous function of
.x/ and .p/, which if normalized can be described by a probability density function
fN .x;p; t / i.e., fN .x;p; t /d 3Npd3N x is the number of representative points that at
time t are in the infinitesimal volume d3Npd3N x about the point .x;p/ in phase
space. Although fN is a probability distribution function, it evolves in time in a
completely deterministic manner, in principle though solving Hamilton’s equations.

An ensemble average of the macroscopic property M.x;p/ can be defined by

hM.t/i D
Z
M.x;p/fN .x;p; t /d 3Npd3N xI

i.e., the expectation of the property M.x;p/. Another important and basic postulate
of statistical mechanics is the so-called ergodic statement, which is that the time
average NM.x;p/

1Although it appears that this statement is self-evident, it is essentially a postulate. A basic
postulate of both equilibrium and non-equilibrium statistical mechanics is that all macroscopic
properties of a given system can be described in terms of the microscopic state of that system.
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NM.x;p/ D hM.t/i :

The ergodic statement asserts that we can consider ensemble averages rather
than time averages as a basis for determining macroscopic properties from the
microscopic description. Thus, we need to study the properties and behavior of the
probability density function fN .

The evolution of the pdf fN is described by Liouville’s theorem. The Hamilton
equations determine how each ensemble member evolves in phase space. Consider
the change dfN in the value of fN at the point .x;p/ at time t in phase space which
results from an arbitrary, infinitesimal change in these variables. This yields

dfN D @fn

@t
dt C

NX

iD1

@fN

@xi
� dxi C

NX

iD1

@fN

@pi
� dpi

) dfN

dt
D @fN

@t
C

NX

iD1

�
@fN

@xi
� Pxi C @fN

@pi
� Ppi
�

: (2.1)

dfN=dt is the total change of fN along the trajectory in the neighborhood of .x/
and @fN =@t is the local change in fN , i.e., at the point .x/. Liouville’s Theorem is
the statement

dfN

dt
D 0: (2.2)

Liouville’s theorem states that along the trajectory of any phase point, the prob-
ability density in the neighborhood of the point remains constant in time. Since
Hamilton’s equations have unique solutions, there can be no intersection of trajec-
tories of separate ensemble members in phase space. Thus, an incremental volume
about the point .x/ in phase space, defined by a specified surface of points in phase
space, is also invariant in time, even though it may change its shape (points from
inside the volume can never cross the surface since then they would intersect with
the points defining the boundary). Since both fN and the number of points inside
the volume dx remain constant in time, the volume of dx is unchanged.

Note that since fN is constant along a trajectory in phase space, so too
is any function of fN . Finally, Liouville’s equation is reversible in the sense
that the transformation t ! �t leaves the form of the equation unaltered.
Hence, if fN ..x.t//; .p.t//; t/ is a solution to Liouville’s equation, then so is
fN ..x.�t//; .p.�t//;�t /.
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2.11 The Language of Fluid Turbulence

The mathematical description in the previous sections provides the statistical tools to
understand fluid turbulence, for example, but like many areas of physics, one needs
to translate the language of mathematics to that of physics. There will be a slight
departure from some of the concepts introduced already in that we will use some of
the tools of Fourier theory. As we have seen, an important physical concept is the
notion of ensemble average, as it allows one to form averages for time-dependent
processes.

An example of a random function in space and time in fluid dynamics is the
velocity field of a turbulent jet or flow. The macroscopic boundary conditions
for the flow field may be independent of time, but the velocity at a point varies
in an unpredictable manner in time. The local time-average velocity is different
in different locations, as are other averages, such as the square of the velocity
departures from the mean .v � U/2 – the variance. For flows with gross boundary
conditions that are constant, we can define time averages. For flows where the
boundary conditions are temporal, time averages are not useful, and we need to
use ensemble averages.

Consider an ensemble of macroscopically identical experiments, each of which
produces as output a variable u.t/, where t > 0 is the time. The output from the j th
experiment is the j th realization of u.t/, denoted by j u.t/ say. The j u.t/ may look
like an oscillation with “noise” superimposed, for example, and each realization
may be rather different from the others. The ensemble average of the values of u.t/
is defined as the limit

hu.t/i D lim
n!1

1

n

nX

jD1
j u.t/;

or one can define the ensemble average of a function gŒu.t/� of u.t/ in the same
way,

hgŒu.t/�i D lim
n!1

1

n

nX

jD1
g
	
j u.t/



:

Ensemble averages of powers of u are the moments, so the ensemble average of uk

is the kth moment of u at t , i.e.,

hu.t/ki D lim
n!1

1

n

nX

jD1

	
j u.t/


k
:

If we consider two distinct times t and t 0 and form the ensemble average of the
product u.t/u.t 0/ for each realization, we then define the covariance Ruu by
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Ruu.t; t
0/ D hu.t/u.t 0/i:

A random function is stationary if all its moments and joint moments are
independent of the choice of time origin. For example, a flow becomes turbulent
after passing through a grid at a starting time t D 0. After some time T � 0, the
flow will have settled down and initial transients will have damped away. Then, for
t � T , the values of velocities and other variables can be expected to be stationary
random functions. Instead of using the above definitions, the stationary ensemble
average is equivalent to a time average, e.g.,

hui D lim
T!1

1

T

Z T=2

�T=2
u.t/dt:

A stationary random variable is a significant simplification since then averages such
as hu.t/i are independent if time, as are all expectations and moments of u.

Time covariances of stationary random functions should be independent of the
choice of time origin but will depend on the time difference 
 D t 0 � t ,

Ruu.
/ D hu.t/u.t C 
/i:

The double subscript indicates that the covariance is the covariance of u with u, and
the argument 
 indicates that the velocities are measured at a time interval 
 apart.
We note too that the velocity is generally three dimensional and so one frequently
expresses the tensor R as

Rij D hui .t /uj .t C 
/i:

Some properties of the covariance are easily derived.

1. Ruu.
/ is an even function. This can be seen from

Ruu.
/ D hu.t/u.t C 
/i D hu.t 0 � 
/u.t 0/i D Ruu.�
/:

2. The joint covariance of u and its time derivative Pu is the time derivative of Ruu.
This follows from

RuPu.
/ D hu.t/Pu.t C 
/i D @

@

hu.t/u.t C 
/i D @

@

Ruu.
/:

Related results are derived easily.
Consider two joint random variables – that is, in each realization there are two

results (such as the x and y components of velocity, or the velocity and the density
at a point in the flow) – say, u.t/ and v.t/. The joint covariance is then given by

Ruv.
/ D hu.t/v.t C 
/i;
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assuming the process is stationary (since we express the joint covariance in terms of
the relative time delay only). Some elementary properties are given in the Exercises.

The covariance and joint covariance functions are assumed to decay for large
values of the lag or delay time 
 , so that the functions are square integrable
and possess Fourier transforms. The Fourier transform of the time autocovariance
function Ruu.
/ is called the power spectral density, defined by

Suu.!/ D 1

2�

Z 1

�1
ei!
Ruu.
/d
:

For a function f .t/, Fourier’s integral theorem yields the expression

f .t/ D 1

2�

Z 1

�1
e�i!t

Z 1

�1
ei!t

0

f .t 0/dt 0d!:

Using this result in the power spectral density expression then yields

Ruu.
/ D
Z 1

�1
e�i!
Suud!:

The joint or cross-spectral density of the joint pair of random functions u and v is
given by

Suv.!/ D 1

2�

Z 1

�1
ei!
Ruvd
 D Couv.!/C iQuuv.!/;

where the real part Couv is called the co-spectrum and the imaginary part Quuv is
called the quadrature spectrum.

Let u.x; t / be a random function of position x and time t . The space-time
covariance is expressed as

Ruu.x; x0; t; t 0/ D hu.x; t /u.x0; t 0/i:
If u is a stationary random function, then Ruu is independent of the choice of time
origin. If Ruu is independent of the choice of spatial origin, and the same is true for
other statistical measures, then u.x; t / is a homogeneous function of x. Hence, for a
stationary and homogeneous random function, the space-time covariance is

Ruu.�; 
/ D hu.x; t /u.x C �; t C 
/i:
We can Fourier transform the space-time covariance with respect to space and time.
The power spectral density of u is the Fourier transform of the time autocovariance
Ruu.0; 
/, and is given by

Suu.!/ D 1

2�

Z 1

�1
ei!
Ruu.0; 
/d
:
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The wave number spectrum ˚.k/ is defined by

˚.k/ D
�
1

2�

�3 Z 1

�1

Z 1

�1

Z 1

�1
expŒ�i.k � �/�Ruu.�; 0/d�1d�2d�3:

Finally, we may define the combined wave number-frequency spectrum as

˚.k; !/ D
�
1

2�

�4 Z 1

�1

Z 1

�1

Z 1

�1

Z 1

�1
expŒ�i.k���!
/�Ruu.�; 
/d�1d�2d�3d
:

Example. Suppose that we have placed two surface gauges in the middle of the
Pacific ocean, separated by a small distance `, so that we can measure the cross-
spectral density at each. With these gauges, we want to determine the phase velocity
of the random surface waves – these are 2D with velocity .u; v/ say. Assuming that
the power spectrum is the same at both gauges, we have

Suv.!; `/ D ŒjSuujjSvvj�1=2.!/Cohuv.!/ expŒi
uv.!/�;

where the coherence Cohuv.!/ D 	
.Co2uv CQu2uv/=jSvvjjSuuj
1=2. The phase

velocity of frequency Fourier component can be determined by a straightforward
argument. The cross-spectral density is a complex function, so the phase is given by
the argument of Suv, i.e.,


uv.!/ D argŒSuv.!; `/�;

and this will give the phase velocity. The phase gives the time interval ıt between
arrivals of a wave, which is proportional to the phase difference times the wave
period divided by 2� ,

ıt D .2�=!/
uv

2�
D 
uv

!
:

The phase speed is simply the gauge separation distance divided by the time delay,
so the phase velocity as a function of frequency is therefore

c.!/ D `

ıt
D `!


uv.!/
:

This expression also obviously gives the average wave number for the freq-
uency as

k D !

c.!/
D 
uv.!/

`
:
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For surface waves, it is also possible to derive the phase velocity from Suu.!/.
Since, if u0 D @u=@x, then Su0u0.!/ D k2Suu.!/ (Exercise), the mean square wave
number is

hk2i D Su0u0.!/

Suu.!/
:

The phase speed is then obtained from

c2slope D !2

hk2i :

Note that the phase speeds calculated from the two methods might well be different.
For example, for a standing wave between the two gauges, the phase speed derived
from the cross-spectral density would be zero while the slope method may yield a
non-zero phase speed. For waves propagating in a single direction, the two methods
should give similar results.

Example. Noise is often defined as having all its Fourier components as stochastic
variables with zero mean i.e., hu.!/i D 0. A signal therefore corresponds to a
definite additive component. In the absence of periodic components, the correlation
function or covariance tends to zero as t ! 1. Suppose that the covariance decays
exponentially, so that

hu.
/u.0/i D Ce�� j
 j:

The power spectrum is given by (Exercise)

Suu.!/ D 1

�

C�

!2 C �2
;

and is called the Lorentz distribution. Note that white noise corresponds to the limit
� �! 1.

Consider now a periodic component to u.t/, say u.t/ D v.t/ C Ae�i!0t , with
hv.t/i D 0 and hv.
/v.0/i D Ce�� j
 j. Hence,

hu.
/u.0/i D Ce�� j
 j C A2e�i!0
 ;

Suu.!/ D 1

�

�C

!2 C 16
C A2ı.! � !0/;

indicating that the periodic signal introduces a spike in the power density spectrum
at ! D !0.
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Exercises

1. Show that the joint covariance is not symmetric in the time lag 
 , i.e., that

Ruv.
/ D Rvu.�
/:

2. Show that the joint covariance for u and a time derivative of v satisfies

RuPv D @

@

Rvu.�
/:

3. Show that the co-spectrum and quadrature spectrum may be expressed as
integrals

Couv.!/ D 1

2�

Z 1

0

ŒRuv.
/CRuv.�
/� cos.!
/d
 I

Quuv.!/ D 1

2�

Z 1

0

ŒRuv.
/ �Ruv.�
/� sin.!
/d
:

4. By introducing the coherence Cohuv.!/ D 	
.Co2uv CQu2uv/=jSvvjjSuuj
1=2 and

the phase 
uv.!/ D arg.Suv/ (the argument of Suv), show that the joint- or cross-
spectral density can be expressed in terms its magnitude and argument,

Suv.!/ D ŒjSuu.!/jjSvv.!/j�1=2 Cohuv.!/ expŒi
uv.!/�:

5. Show that if u0 D @u=@x, then Su0u0 D k2Suu.!/.
6. Show that an exponentially decaying covariance hu.
/u.0/i D Ce�� j
 j yields a

Lorentz distribution for the power spectral density,

Suu.!/ D 1

�

�C

!2 C �2
:

Sketch the covariance and the power spectral density.
7. Show that the autocovariance in the last example of the chapter is given by

hu.
/u.0/i D Ce�� j
 j C A2e�i!0
 ;

and that

Suu.!/ D 1

�

�C

!2 C 16
C A2ı.! � !0/:

Sketch the covariance and the power spectral density.



70 2 Statistics

References

W. Feller, An Introduction to Probability Theory and its Applications, vol. 1, 3rd edn. (John Wiley,
New York, 1968)

R.V. Hogg, A.T. Craig, Introduction to Mathematical Statistics, 4th edn. (McMillan, New York,
1978)

I.N. Gibra, Probability and Statistical Inference for Scientists and Engineers. (Prentice Hall,
Englewood Cliffs, 1973)



Chapter 3
The Boltzmann Transport Equation

3.1 Derivation of the Boltzmann Transport Equation

We are not interested in the motion of each particle in detail but instead in the
distribution function f .x;p; t /, which is defined so that

f .x;p; t /d 3xd3p

is the number of particles dN in the phase space volume .xCd3x;pCd3p/ about the
point .x;p/ at some time t . The space defined by .x;p/ is a six-dimensional space
in spatial volume x and momentum p, and is called �-space. Before proceeding to
the derivation of the transport equation for the distribution function in phase space,
we prove a useful result.

Invariance of phase space volume. Consider a frame comoving with a group
of particles that occupy a phase space volume .x C d3x0;p C d3p0/ about the
point .x;p/ at some time t , all at the same energy. The particles therefore occupy
a spatial volume element d3x0 D dx0dy0d z0 and a momentum volume element
d3p0 D dp0

xdp
0
ydp

0
z. Consider now a frame K that is not comoving with the

particles, say with velocity parameter ˇ 
 v=c with respect to the comoving frame
K 0. In the spatial volume d3x occupied by the particles as measured in frame K,
perpendicular distances are unaffected by the motion, i.e., dy D dy0, d z D d z0, say,
but there is a length contraction in the x direction (the assumed direction of motion),

so that dx D ��1dx0, where � 
 �
1 � ˇ2��1=2, or

d3x D ��1d 3x0:

Consider the momentum volume element d3p measured in the frameK. Since there
is no energy change from K to K 0, the x component of the momentum transforms
according to dpx D �dp0

x and the remaining momentum increments are unchanged.
Thus,

G.P. Zank, Transport Processes in Space Physics and Astrophysics, Lecture Notes
in Physics 877, DOI 10.1007/978-1-4614-8480-6__3,
© Springer Science+Business Media New York 2014
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d3p D �d3p0;

from which we find

d3xd3p D d3x0d3p0:

Hence, since the frames K and K 0 are arbitrary, d3xd3p is a Lorentz invariant.
Furthermore, since the number of particles dN within a phase space volume element
is a countable quantity and therefore invariant, we have also established that the
phase space density

f .x;p; t / D dN

dV
; dV 
 d3xd3p;

is an invariant.
Now suppose that the number density of points in phase space from volume

element to volume element does not vary rapidly. This allows us to assume
continuity of f .x;p; t / over the entire �-space and we can introduce an integral
over the over the distribution function so that

Z
f .x;p; t /d 3xd3p D N;

where N is the total number of particles in a total volume V . If the particles are
distributed uniformly in space, so that f is independent of x, then

Z
f .x;p; t /d 3p D N

V
:

Kinetic theory tries to find the distribution function f for particular forms of particle
interaction in different physical settings.

To determine the equation of “motion” for the distribution function, suppose
there are no particle collisions, so that particles at location .x;p/ at time t will
find themselves at location .x C vıt;p C Fıt/ at the time t C ıt . Here ıt is an
infinitesimal change in time, F the force acting on the particle, and v D p=m
the velocity. Furthermore, these translated particles will find themselves in the new
volume element d3x0d3p0 at time tC ıt . Thus, in the absence of collisions, we have

f .x C vıt;p C Fıt; t C ıt/d3x0d3p0 D f .x;p; t /d 3xd3p

H) f .x C vıt;p C Fıt; t C ıt/ D f .x;p; t /;

by the invariance of the phase space volume element.
In the presence of collisions, the above equality will be modified so that

f .x C vıt;p C Fıt; t C ıt/ D f .x;p; t /C
�
ıf

ıt

�

col l

ıt;
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which should be interpreted as a definition of the collisional term .ıf=ıt/col l . By
Taylor expanding the LHS about the time t , and retaining only linear terms, we
obtain the equation of motion for the distribution function f as we let ıt ! 0,

@f

@t
C p
m

� rf C F � rpf D
�
ıf

ıt

�

col l

;

where r and rp are the gradient operators in x and p respectively. The variables x,
p, and t are independent variables. At this point, we will assume that the particles are
non-relativistic and express the Boltzmann equation in terms of particle velocity v,

@f

@t
C v � rf C F

m
� rvf D

�
ıf

ıt

�

col l

: (3.1)

Before deriving forms of the collisional term, it is often useful to express the
Boltzmann equation (3.1) in terms of mixed variables related to convection in a
background flow. One can separate the particle velocity into a random component
and mean or a bulk fluid or gas component u.x; t / according to

c.x; t / D v � u.x; t /;

where the bulk velocity is defined as a moment of the distribution function (more
later)

u.x; t / D 1
R1

�1 f .x; v; t /d 3v

Z 1

�1
vf .x; v; t /d 3v:

The bulk velocity is independent of v, and the random velocity component c, unlike
that of v, is a function of t . To express the Boltzmann equation (3.1) in terms of the
random velocity c.x; t / introduces a mixed phase space set of coordinates, giving
(Exercise)

@f

@t
C .ui C ci /

@f

@xi
�
�
@ui
@t

C �
uj C cj

� @ui
@xj

� Fi

m

�
@f

@ci
D
�
ıf

ıt

�

col l

; (3.2)

and f D f .x; c; t /, u D u.x; t /, F D F.x; v; t /. We shall see that this form of the
Boltzmann equation is the starting point for studying energetic particle transport in
a magnetically turbulent medium.

Exercises

1. Show that the Boltzmann equation (3.1) is invariant with respect to Galilean
transformations.

2. Show that the Boltzmann equation (3.1) transforms into the mixed phase space
coordinate form (3.2).
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3. Find the general solution to the Boltzmann equation (3.1) in the absence of
collisions i.e., .ıf=ıt/col l D 0. Derive the general solution for the case that
the force F D 0.

3.2 The Boltzmann Collision Operator

Consider a suitably rarefied gas that satisfies the following conditions.

1. The gas is neutral;
2. The mean distance between particles is large in comparison to their size as

expressed by their inter-particle forces;
3. The gas is sufficiently dilute that only binary collisions are important; and
4. Collisions conserve mass, momentum, and energy.

For simplicity, suppose we consider a gas of particles of a single species and let the
mass be normalized to unity. Consider a two particle collision, where one particle
has velocities in the range dv and the other in a range du before collision and
in the ranges dv0 and du0 after. See Fig. 3.1. To keep the notation simple in this
subsection, we do not use bold-face for the vector variables. As noted, collisions
conserve momentum and energy, so that

v0 C u0 D v C uI
jv0j2 C ju0j2 D jvj2 C juj2:

The total number of collisions per unit time per unit volume for a particle with
velocities in the range dv may be expressed as (the number of particles per unit
volume) times (the probability that a particle experiences a collision), or

f .x; v; t /dv � P;

u 

v 

v’ 

u’ 

Fig. 3.1 Binary collision
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where P is proportional to (the number of particles per unit volume) times (dv0 �
du0) or f .x; u; t /du � dv0du0. Thus the

total number of collisions/unit volume/unit time

D ˚.u0; v0I u; v/f .u/f .v/dudvdu0dv0:

The function ˚ is determined from the collision problem for the given physical
system. The joint pdf for a pair of particles experiencing a collision with velocities
u, v at .x; t/ is proportional to the product f .x; v; t /f .x; u; t /, and was in fact
hypothesized already by Maxwell. The hypothesis is called “molecular chaos” and
in fact corresponds to an assumption of stochastic independence i.e., the joint pdf
can be expressed as the product of the marginal pdfs.

The function˚ may be thought of as the transition matrix in quantum mechanics.
˚ may be regarded as a symmetric function, i.e.,

˚.u0; v0I u; v/ D ˚.u; vI u0; v0/:

This follows from noting that in equilibrium, the number of collisions .u; v/ 7!
.u0; v0/ is equal to the number of collisions .�u0;�v0/ 7! .�u;�v/. This is a
consequence of the Newtonian equations being symmetric under time reversal.
Thus, under such a mapping we expect to get

˚.u0; v0I u; v/ D ˚.�u;�vI �u0;�v0/;

and hence it follows that ˚ is a symmetric function.
For each collision of two particles, there is a transfer of velocity out of a particular

range dv (losses). Given dv, the total number of collisions .u; v/ 7! .u0; v0/ with all
possible values of u, u0, v0 occurring in the volume element dx per unit time is

dxdv
Z
˚.u0; v0I u; v/f .u/f .v/dudu0dv0:

Consider the total number of collisions in the volume dx that bring particles into the
range dv from outside the range per unit time (gains). Given v, these are collisions
.u0; v0/ 7! .u; v/ with all possible u, u0, v0 such that

the total number of such collisions in volume dx per unit time

D dxdv
Z
˚.u; vI u0; v0/f .u0/f .v0/dudu0dv0:

Consequently, by virtue of the symmetry of ˚ , the collisional term can be
expressed as

�
ıf

ıt

�

col l


 C.f / D
Z
˚.u; vI u0; v0/

	
f .u0/f .v0/ � f .u/f .v/
 dudu0dv0:
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The differential cross section d� is frequently introduced,

d� D ˚du0dv0

jv � uj :

The differential cross section contains delta functions that express conservation of
momentum and energy,

ı.u0 C v0 � u � v/ � ı �jv0j2 C ju0j2 � jvj2 � juj2� :

If the delta functions are removed, then d� is the scattering cross section, expressed
in terms of the solid angle

d˝ D sin 
d
d�;

and relative velocity ju � vj, such that

d� D �.˝; ju � vj/d˝:

Hence,

C.f / D
Z

<3

Z

j˝jD1
�.˝; ju � vj/Œf .u0/f .v0/ � f .u/f .v/�d˝du:

This is the Boltzmann collision integral, and is integrated over five independent
variables. The Boltzmann transport equation (3.1) is therefore a nonlinear integro-
differential equation

@f

@t
C v � rf C F � rvf D

Z

<3

Z

j˝jD1
�.˝; ju � vj/Œf .u0/f .v0/�f .u/f .v/�d˝du:

(3.3)

3.2.1 Collision Dynamics

Consider first the simplest possible case of hard sphere scattering. In this case, we
have

˚.u; vI u0; v0/ D b0

2
ı.u C v � u0 � v0/ı

�jvj2 C juj2 � jv0j2 � ju0j2� ;

where b0 is related to the size of the spheres and the factor of 2 is due to energy
conservation. Then C.f / can be expressed as
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v-u 

v’-v 

q

Fig. 3.2 Geometry for hard
sphere scattering of a particle

C.f / D b0

2

Z Z
	
f .v0/f .u C v � v0/ � f .u/f .v/
 �

ı
�jvj2 C juj2 � jv0j2 � ju C v � v0j2� dudv0

D b0

2

Z Z
Œf .v � �/f .u C �/ � f .u/f .v/� �

ı
�jvj2 C juj2 � jv � �j2 � ju C �j2� dud�;

where � D v � v0. Write d� D �2d�d˝ D �2d� sin 
d
d� using spherical
coordinates .�; 
; �/ with the polar axis along v � u so that j�j � jv � uj and
(Fig. 3.2)

cos 
 D � � .v � u/

j�jjv � uj D .v � v0/ � .v � u/

jv0 � vjjv � uj :

We can express the argument of the energy delta function above as

jvj2 C juj2 � jv � �j2 � ju C �j2
D jvj2 C juj2 � .jvj2 � 2v � �C j�j2/ � .juj2 C 2u � �C j�j2/
D �2j�j2 C 2.v � u/ � � D 2�jv � uj cos 
 � 2�2:

To evaluate the delta function, we need the following result (see the Exercises),

ı..x � a/.x � b// D 1

ja � bj Œı.x � a/C ı.x � b/� ; a ¤ b:

Hence,

1

2
ı
�jvj2 C juj2 � jv0j2 � ju C v � v0j2� D ı

�
�2 � �jv � uj cos 


�

D ı.�.� � jv � uj cos 
//

D 1

ju � vjj cos 
 j �

Œı.�/C ı.� � jv � uj cos 
/� :



78 3 Boltzmann Equation

The ı.�/ term in the integrand yields 0 because of the �2d� term, whereas the
second term contributes

1

ju � vjj cos 
 j jv � uj2 cos2 
 D ju � vj cos 
:

In the integrand for C.f /, we have

f .v � �/ 
 f .v0/; f .u C �/ 
 f .u0/;

so that

C D b0

Z

j˝jD1

Z

<3

ju � vjj cos 
 jŒf .u0/f .v0/ � f .u/f .v/�dud˝

for the scattering of hard spheres i.e., for hard sphere scattering, �.˝; ju � vj/ D
b0ju � vjj cos 
 j, where b0 is an impact parameter that reflects the size of the
scattering spheres and 0 < 
 < �=2.

A more general analysis can be developed for particles with a potential energy
V.r/. Consider the relative motion of particles P1 and P2 moving in each other’s
field of force. The particles have position vectors r1 and r2, masses m1 and m2,
and subject to central forces F1 and F2. Of course, F1 D �F2, and are parallel to
r D r1 � r2 and depend only on r D jr1 � r2j. Thus,m1 Rr1 D F1,m2 Rr2 D F2 so that
m1m2 .Rr1 � Rr2/ D m2F1 �m1F2, or

M Rr D m1m2

m1 Cm2

Rr D F1 D F;

where M is the reduced mass.
Introduce polar coordinates r and 
 ,

x D r cos 
 y D r sin 
;

to describe particle motion subject to a central force (Fig. 3.3). To obtain the particle
velocity and acceleration vector, differentiating with respect to time yields

Px D Pr cos 
 � r P
 sin 
 I
Py D Pr sin 
 C r P
 cos 
 I
Rx D Rr cos 
 � 2 Pr P
 sin 
 � r P
2 cos 
 � r R
 sin 
 I
Ry D Rr sin 
 C 2 Pr P
 cos 
 � r P
2 sin 
 C r R
 cos 
; (3.4)

where as usual the dot denotes a time derivative. The velocity and acceleration
vectors may be expressed in terms of the orthonormal vectors Or and O
 using
v D vr Or C v
 O
 or a D ar Or C a
 O
 . Furthermore, the velocity and acceleration
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Fig. 3.3 Scattering of a
particle by a central force

y

r

x

vθ

vθ

y

r

x
q q

q

Fig. 3.4 Particle motion subject to a central force

components of the Cartesian coordinates of the particle can be expressed using
the time derivatives of the Cartesian coordinates. One obtains geometrically from
Fig. 3.4 the following relations

vr D Px cos 
 C Py sin 
 I
v
 D � Px sin 
 C Py cos 
 I
ar D Rx cos 
 C Ry sin 
 I
a
 D � Rx sin 
 C Ry cos 
: (3.5)
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By using (3.5) in (3.4), we easily obtain

vr D Pr I v
 D r P
 I (3.6)

ar D Rr � r P
2I a
 D 2 Pr P
 C r R
: (3.7)

The terms in (3.7) correspond to the centrifugal (r P
2) and Coriolis (2 Pr P
 ) forces
respectively.

On returning to the reduced mass equation of motion, we may use the above
results to obtain

M. Rr � r P
2/Or CM.r R
 C 2 Pr P
/ O� D �@V
@r

Or;

where V.r/ is the potential energy (V.1/ D 0) of the force F. The conservation
laws for angular momentum and energy are therefore

r2 P
 D const: D gbI
1

2
M. Pr2 C r2 P
2/C V.r/ D const: D 1

2
Mg2;

where b is a distance, and is known as the “impact parameter”, and g is the constant
relative velocity. It is then straightforwardly established that

g2b2

2r4

"�
dr

d


�2
C r2

#

D 1

2
g2 � V.r/

M
;

from which we find

d


dr
D ˙ b

r2

�

1 � b2

r2
� 2V.r/

Mg2

��1=2
:

The path of particle P1 in a force field centered on P2 exhibits two asymptotes,
one along the initial direction of approach and the other along the final direction of
motion as the particle recedes to “infinity.” The “scattering angle” � is the angle
between the asymptotes (see Fig. 3.3). The reference frame is chosen so that prior
to the interaction of the particles, P1 is at 
 D 0, and its final position after the
interaction is at 
 D � � �. The trajectory is symmetric about the apse line i.e., the
line from P1 to P2 at closest approach .r0; 
0/. At this point, dr=d
 D 0. Hence,

r20 � b2 � 2r20
Mg2

V.r0/ D 0:

Evidently, � D ��2
0. To determine 
0, we integrate d
=dr over .r0;1/, choosing
the negative root since the slope is negative along the incoming trajectory. Hence,

� D � � 2b
Z 1

r0

dr

r2
p
1 � b2=r2 � 2V.r/=.Mg2/ :
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As discussed above, the differential cross section can be expressed as

d� D �.˝; ju � vj/d˝:
We can use the results above for the scattering angle to determine � . Suppose
that P2 is incident on an annulus of inner radius b and outer radius b C db with
fractional area 2�bdbd�, where d� is the angular width of the area. Let �d˝ be
the probability that P1 is deflected into the solid angle d˝ D sin�d�d�. Of N
incident particles per unit area per second, jbdbd�jN are scattered into solid angle
d˝, which by definition is �d˝N . Hence, we obtain

� D b

sin�

ˇ
ˇ
ˇ
ˇ
db

d�

ˇ
ˇ
ˇ
ˇ ;

where � D �.b; g/ can be computed if the potential V.r/ is known. An important
example is the Coulomb or Rutherford scattering cross section.

Exercises

1. Show that for a ¤ b,

ı..x � a/.x � b// D 1

ja � bj Œı.x � a/C ı.x � b/�:

2. Complete the steps in the derivation of

d


dr
D ˙ b

r2

�

1 � b2

r2
� 2V.r/

Mg2

��1=2
;

starting from

M. Rr � r P
2/Or CM
�
r R
 C 2 Pr P


� O� D �@V
@r

Or:

3. Consider the scattering of an electron (charge Z1 D �1) in the Coulomb field of
an ion of charge eZ2,

E D eZ2

4�"0

r
r3
;

where "0 is the permittivity of free space. Show that

b2

rb0
D 1C � cos 
; b0 
 jZ1Z2je2=.4�"0Mg2/;
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and � 
 p
1C .b=b0/2. Show that at the point of closest approach, tan 
0 D

b=b0 and hence that

� D b20

4 sin4 1
2
�

D
 

Z1Z2e
2

8�"0Mg sin2 1
2
�

!2

:

This is the Coulomb or Rutherford scattering cross section.

3.3 Conservation Laws, the H-Theorem, and the
Maxwell-Boltzmann Distribution Function

The collisional integral is frequently expressed as the operator

Q.f; f /.v/ D
Z

<3

Z

j˝jD1
�.˝; ju � vj/Œf .u0/f .v0/ � f .u/f .v/�dud˝:

A related quadratic form can be introduced,

Q�.f; g/.v/ D 1

2

Z

<3

Z

j˝jD1
�Œf .v0/g.u0/Cf .u0/g.v0/�f .u/g.v/�f .v/g.u/�d˝du:

Q� is symmetric and Q�.f; f / D Q.f; f /.
We can obtain explicit forms of u0 and v0 from the momentum and energy

conservation laws since they impose four constraints on the six variables. This
implies two degrees of freedom. We can write

u0 D u C a.u; v; ˝/˝

v0 D v � a.u; v; ˝/˝;

where a is a scalar function and j˝j D 1. Evidently, momentum is automatically
conserved. Considering energy conservation implies

ju0j2 C jv0j2 D juj2 C a2 C 2a˝ � u C jvj2 C a2 � 2a˝ � v D juj2 C jvj2:

Hence,

a2 D a.˝ � v �˝ � u/;

or, provided a ¤ 0,

a.u; v; ˝/ D ˝ � .v � u/:
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Introduce a smooth function �.v/, and consider
R
Q�.f; g/�.v/dv, and exchange

u and v in the integral. Then, since

u0 D u C Œ˝ � .v � u/�˝I
v0 D v � Œ˝ � .v � u/�˝;

swapping u and v yields

v � Œ˝ � .v � u/�˝ D v0I
u C Œ˝ � .u � v/�˝ D u0:

Consequently, we obtain the following equivalent expression,

Z
Q�.f; g/�.v/dv D 1

2

Z Z Z
�
	
f .v0/g.u0/C f .u0/g.v0/

� f .u/g.v/ � f .v/g.u/
 �.v/d˝dudv

D 1

2

Z Z Z
�
	
f .v0/g.u0/C f .u0/g.v0/

� f .u/g.v/ � f .v/g.u/
 �.u/d˝dudv

since � is invariant.
Now consider the change in variables .u; v/ ! .u0; v0/ so that the integral

becomes

R
Q�.f; g/�.v/dv

D 1

2

Z Z Z
�.˝; jv0 � u0j/�.v.u0; v0//jJ j 	f .v0/g.u0/C f .u0/g.v0/

�f .u.u0; v0//g.v.u0; v0// � f .v.u0; v0//g.u.u0; v0//


d˝du0dv0:

It is a tedious if straightforward exercise to show that the Jacobian J D �1. Since

ju � vj2 D 2juj2 C 2jvj2 � ju C vj2 D ju0 � v0j2;

(from conservation of energy and momentum), � is invariant. Also, since

v0 � u0 D v � u � 2.˝ � .v � u//˝;

˝ � .v0 � u0/ D ˝ � .v � u/ � 2.˝ � .v � u// D �˝ � .v � u/:

These equations can be inverted to yield

v D v0 C Œ˝ � .v � u/�˝ D v0 � Œ˝ � .v0 � u0/�˝ 
 v.u0; v0/I
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u D u0 � Œ˝ � .v � u/�˝ D u0 C Œ˝ � .v0 � u0/�˝ 
 u.u0; v0/:

On renaming .u0; v0/ to .u; v/, we get

Z
Q�.f; g/�.v/dv D 1

2

Z Z Z
�.˝; jv � uj/ Œf .v/g.u/C f .u/g.v/

�f .u �˝ � .v � u/˝/g.v �˝ � .v � u/˝/

�f .v �˝ � .v � u/˝/g.u C˝ � .v � u/˝/� �.v �˝ � .v � u/˝/d˝dudv

D 1

2

Z Z Z
�.˝; jv � uj/ 	f .v/g.u/C f .u/g.v/ � f .u0/g.v0/

�f .v0/g.u0/


�.v0/d˝dudv:

Finally, if we switch u and v above and again let u0 ! v0, v0 ! u0 as above, we
obtain the last equivalent expression,

R
Q�.f; g/�.v/dv

D 1

2

Z Z Z
�
	
f .v/g.u/C f .u/g.v/ � f .u0/g.v0/ � f .v0/g.u0/



�.u0/d˝dudv:

Let f D g in Q�.f; g/.v/ and the four equivalent forms to obtain

Z
Q.f; f /�.v/dv D 1

4

Z Z Z
�
	
f .u0/f .v0/ � f .u/f .v/


� 	�.v/C �.u/ � �.v0/ � �.u0/


d˝dudv: (3.8)

Hence it follows that

R
Q.f; f /�.v/dv D 0 if �.v/C �.u/ D �.v0/C �.u0/ .

These are called collisional invariants. In particular, if we choose

�.v/ D 1I �.v/ D vj ; .j D 1; 2; 3/I �.v/ D jvj2;

it follows immediately (conservation of momentum and energy) that the following
moments are zero:

Z
Q.f; f /dv D 0I

Z
Q.f; f /vj dv D 0I

Z
Q.f; f /jvj2dv D 0;

for j D 1; 2; 3. Consequently, if we choose �.v/ to be one of the three moments and
multiply the Boltzmann equation by �.v/, and integrate, we obtain the conservation
laws,
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Z Z
fdvdx D const. mass conservationI

Z Z
vj fdvdx D const. momentum conservationI

Z Z
jvj2fdvdx D const. energy conservation:

We now come to a fundamental result for the collisional Boltzmann equation,
viz. the H-theorem. This theorem shows that Boltzmann’s equation possesses the
irreversibility associated with dissipation – the left-hand side has negative parity
under time reversal while the right-hand side has positive parity. Negative parity
means that its sign changes when all the velocities and the time are reversed in sign;
with positive parity, there is no change in sign.

Theorem. If f satisfies the Boltzmann equation, then

dH

dt
� 0; H.t/ 


Z Z
f lnfdvdx:

The expression �f lnf is the entropy density.

Proof. Let � D 1C lnf and use Eq. (3.8) to obtain

4

Z
Q.f; f /.1C lnf /dv D

Z Z Z
�
	
f .u0/f .v0/ � f .u/f .v/
 �

	
lnf .v/C lnf .u/ � lnf .v0/ � lnf .u0/



d˝dudv

D
Z Z Z

�
	
f .u0/f .v0/ � f .u/f .v/
 Œln.f .u/f .v//

� ln.f .u0/f .v0//


d˝dudv

D
Z Z Z

�
	
f .u0/f .v0/ � f .u/f .v/


ln
f .u/f .v/

f .u0/f .v0/
d˝dudv

D
Z Z Z

�f .u0/f .v0/.1 � �/ ln�d˝dudv;

where

� D f .u/f .v/

f .u0/f .v0/
:

Now clearly .1 � �/ ln� � 0 for all � > 0, implying that
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Z
Q.f; f / lnfdv � 0;

for f > 0. Therefore,

d

dt

Z Z
f lnfdvdx D

Z Z
ft .1C lnf /dvdx

D
Z Z

.�v � rf CQ.f; f // .1C lnf /dvdx

D
Z Z

Q.f; f / lnfdvdx � 0;

thus establishing the H-theorem.
To conclude this section, consider

R
Q.f; f / lnfdv D 0. It follows that

lnf .v/C lnf .u/ D lnf .v0/C lnf .u0/;

i.e., � D lnf satisfies �.v/C�.u/ D �.v0/C�.u0/. Thus, conservation of momentum
and energy imply immediately that

�.v/ D aC b � v C cjvj2;
and thus f is a Gaussian distribution, f .v/ D exp.a C b � v C cjvj2/, c < 0. The
precise values of a, b, and c are determined from the constraints,

n D
Z
fdv; nu D

Z
vfdv;

3

2
nkT D m

2

Z
.v � u/2fdv:

We can rewrite the equilibrium distribution f .v/ as

f .v/ D exp
	�˛ � ˇ.v � u/2



;

where ˛, ˇ, and u are determined from the above constraints. For simplicity, suppose
we move into the translational frame so that c D v � u. The first constraint yields

n D e�˛
Z 1

�1

Z 1

�1

Z 1

�1
exp

h
�ˇ.c2x C c2y C c2z /

i
dcxdcydcz;

and since

r
�

ˇ
D
Z 1

�1
exp.�ˇx2/dx;

we have

exp.�˛/ D n

�
ˇ

�

�3=2
:
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The third constraint yields

3

2
nkT D e�˛

Z 1

�1

Z 1

�1

Z 1

�1
1

2
m
�
c2x C c2y C c2z

�

exp
h
�ˇ

�
c2x C c2y C c2z

�i
dcxdcydcz:

The expectation of c2x is given by

EŒc2x� D 1

n

Z
c2xfdc

D
�
ˇ

�

�3=2 Z 1

�1

Z 1

�1

Z 1

�1
c2x exp

h
�ˇ

�
c2x C c2y C c2z

�i
dcxdcydcz:

Since

p
�

2ˇ3=2
D
Z 1

�1
x2 exp.�ˇx2/dx;

EŒc2x� D 1=2ˇ D EŒc2y� D EŒc2z �. Hence, kT D m=.2ˇ/ or ˇ D m=.2kT /. This
yields the familiar Maxwell-Boltzmann distribution

f .x; v; t / D n
� m

2�kT

�3=2
exp

�

�m.v � u/2

2kT

�

;

where k is Boltzmann’s constant, u, n, and T are the bulk velocity, number density,
and temperature of the gas.

3.4 The Boltzmann Equation and the Fluid Equations

Suppose f .x; v; t / is a solution to the Boltzmann equation in the absence of forces,

@f

@t
C v � rf D Q.f; f /: (3.9)

For each species, we define the number density and the hydrodynamic (Eulerian)
velocity by

n.x; t / D
Z
f .x; v; t /d 3v;

and

u.x; t / D 1

n

Z
vf .x; v; t /d 3v:
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On multiplying (3.9) by 1 and integrating with respect to v yields

@

@t

Z
fd3v C r �

Z
vfd3v D 0

H) @n

@t
C r � .nu/ D 0;

where we have exploited the vanishing of the velocity integrated collision integral.
This is the continuity equation in physical space, or the conservation of mass
(sometimes charge) equation.

We define the pressure tensor pij by

pij .x; t / D
Z
m.vi � ui /.vj � uj /f .x; v; t /d 3v

D m

Z
vivj fd

3v �mnuiuj ;

which is the negative of the stress tensor as generally defined in fluid mechanics.
Multiply (3.9) by vi and integrate over velocity space. The first term is @.nui /=@t ,
and the second is

@

@xj

Z
vivj fd

3v D @

@xj

�
1

m
pij C nuiuj

�

:

This then yields the conservation form of the equation of momentum,

@

@t
.nui /C @

@xj

�
1

m
pij C nuiuj

�

D 0;

which, if we use the continuity equation, reduces to

mn

�
@ui
@t

C uj
@ui
@xj

�

D �@pij
@xj

;

for smooth flows i.e., flows without discontinuities such as shock waves or contact
discontinuities.

The continuity and momentum equations admit the further unknown pij , so
we can take the next moment of equation (3.9) to determine the evolution equa-
tion of the pressure tensor. However, this introduces further unknowns – this is
referred to as the “closure problem.” Nonetheless, by introducing the following
definitions,

".x; t / D 1

2mn

X

i

pi i ;
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for the internal energy, (and note that � 
 mn) and

qi .x; t / D 1

2
m

Z
.vi � ui /.v � u/ � .v � u/fd3v;

for the heat flux vector, we can derive an energy conservation equation. On
multiplying (3.9) by jvj2 and integrating, we obtain

@

@t

Z
jvj2fd3v C r �

Z
jvj2vfd3v D 0:

The internal energy can be expressed as

".x; t / D 1

2mn

X

i

pi i D 1

2n

X

i

Z
jvi � ui j2fd3v

D 1

2n

Z
�juj2 C jvj2 � 2u � v

�
fd3v

D 1

2n

�

njuj2 C
Z

jvj2fd3v � 2nu � u
�

D 1

2n

Z
jvj2fd3v � 1

2
u2:

It therefore follows that

m

2

@

@t

Z
jvj2fd3v D @

@t
.mn"C 1

2
mnu2/:

To compute
R

v2vi fd3v, we need to use the heat flux vector,

qi D 1

2
m

Z
.vi � ui /jv � uj2fd3v

D 1

2
m

Z
.vi � ui /

2

4u2 C v2 � 2
X

j

vj uj

3

5 fd3v

D �1
2

ui
	
mnu2 C �

2mn"Cmnu2
� � 2mnu � u




C1

2
mu2

Z
vi fd

3v C 1

2
m

Z
viv

2fd3v �m
X

j

uj

Z
vivj fd

3v

D �mn"ui C 1

2
mnu2ui C 1

2
m

Z
viv

2fd3v �
X

j

uj .pij Cmnuiuj /

D �mn"ui � 1

2
mnuiu

2 �
X

j

uj pij C 1

2
m

Z
viv

2fd3v:
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Combining these results yields the conservation of energy equation,

@

@t

�

mn

�

"C 1

2
u2
��

C
X

i

@

@xi

2

4mnui

�

"C 1

2
u2
�

C
X

j

uj pij C qi

3

5 D 0:

The conservation of mass, momentum, and energy are the five equations
that are the basis of continuum mechanics – fluid mechanics or hydrodynamics,
magnetohydrodynamics (including Maxwell’s equations), etc. As noted above, the
five equations possess more than five unknowns. We have the two scalars, n and
e, the three vectors u and q, giving six unknowns, and finally the 3 � 3 pressure
tensor pij , which is symmetric and yields a further six unknowns. However, the
trace of the pressure tensor is related to the internal energy e through

P
i pi i D 2�e,

which reduces the unknowns by one. Hence we are left with five equations for 13
unknowns. We therefore need to impose constitutive equations or relations to relate
pij , qi to n, u, e.

Finally, we may define a “local temperature” T .x; t / by

3nkT D pii D m

Z
jv � uj2fd3v:

The energy density of the random translational motion is thus 3
2
nkT .

Example. The Euler equations result from assuming that

pij D p.x; t /ıij ; qi D 0;

and p.x; t / is the scalar pressure. We have

@n

@t
C r � .nu/ D 0I

nm

�
@u
@t

C u � ru
�

D �rpI
@p

@t
C u � rp C 5

3
pr � u D 0:

Example. The Navier-Stokes equations for viscous fluid result from assuming that
there exist viscosity coefficients � and � such that

pij D p.x; t /ıij � �
�
@ui
@xj

C @uj
@xi

�

� �
X

k

@uk
@xk

ıij I

qi D �� @T
@xi

:

Note that the non-diagonal terms in the pressure tensor pij i.e., excluding the scalar
pressure pıij , comprise the rate-of-strain tensor.
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Exercises

1. By using the conservation equations for mass, momentum and energy, derive the
evolution equation for pij assuming the flow is smooth.

2. Use the Boltzmanns-Maxwellian distribution to show that the definitions for the
number density n, velocity u, pressure tensor pij , and temperature T do indeed
yield these quantities. Show too that the heat flux q vanishes and that the pressure
tensor can be expressed as pij D p.x; t /ıij .

3. Using the above results, derive the Euler equations.
4. Linearize the 1D Euler equations about the constant state 	0 D .n0; u0; p0/

i.e., consider perturbations ı	 such that 	 D 	0 C ı	 . Derive a linear wave
equation in terms of a single variable, say ın. Seek solutions to the linear wave
equation in the form exp i.!t � kx/, and show that the Euler equations admit
a non-propagating zero-frequency wave and forward and backward propagating
acoustic modes satisfying the dispersion relation !0 
 ! � u0k D ˙Csk where
Cs is a suitably defined sound speed.

3.5 The Relaxation Time Approximation

The form of the Boltzmann collision operator suggests that we may approximate

Q.f; f /.v/ D �f � f0



D ��.f � f0/;

for a relaxation time parameter 
 or scattering frequency � (Bhatnagar et al.
1954). Here, f0 is the Maxwellian equilibrium distribution. The relaxation time or
BGK operator must vanish under the appropriate moments, as with Q.f; f /.v/.
The relaxation time approximation describes the rate of loss of particles ��f
due to collisions from a small element of phase space while �f0 represents the
corresponding gain of particles as the result of collisions. The detailed dynamics
and statistics of the collisions are neglected, as is the fact that the velocity after a
collision is correlated with that before. The relaxation operator is purely local and
simulates the effect of close binary collisions in which there is a substantial change
of velocity. The collisions can be thought of as a Poisson process, occurring with
probability �dt in the time interval Œt; tCdt�, and the relaxation operator establishes
a Maxwellian or normal distribution in a time of the order of a few ��1.

3.6 The Chapman-Enskog Expansion

We have seen that taking moments of the Boltzmann equation leads to a closure
problem. A formal approach to solving the Boltzmann equation and closing the
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moment expansion was developed independently by D. Enskog and S. Chapman.1

The general approach will be outlined, and then by way of example, the Navier-
Stokes equations will be derived using the relaxation time approximation.

We consider an expansion of the distribution function about the equilibrium or
Maxwellian distribution f0 in the form

f D f0 C "f1 C "2f2 C � � � ;

where f1; f2; : : : are successive corrections to f . The right-hand collisional term is
to be regarded as providing the fastest time scale in the problem and an order larger
than the left, allowing us to write the equation as

@f

@t
C vi

@f

@xi
D 1

"
Q.f; f /.v/:

To capture the fast time scale behavior, we need to introduce a multiple scales
expansion of the time derivative,

@

@t
D @0

@t
C "

@1

@t
C "2

@2

@t
C � � � :

On using these expansions in the Boltzmann equation, we obtain

0 D Q0.f0; f0/I
@0f0

@t
C vi

@f0

@xi
D Q1.f0; f1/I

@0f1

@t
C @1f0

@t
C vi

@f1

@xi
D Q2.f0; f1; f2/;

where Q1;Q2; : : : are appropriate functionals, assumed known. The first of these
equations is satisfied automatically by our choice of the Maxwellian distribution.
The moment equations applied to the lowest order then give @n0=@t , @u0=@t , and
@T0=@t . Since we therefore know @f0=@t , the second equation can in principle be
solved for f1. Since f1 must not contribute to n0, u0, and T0, it is also subject to the
constraints

Z
f1d

3v D 0;

Z
cf1d3v D 0;

Z
c2f1d

3v D 0:

1A wonderful reference to much of this section is the classic monograph by Chapman and Cowling
(1970).
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It transpires that this system can be solved uniquely and terms describing viscosity
and heat conduction can be derived. This can be laborious for the full collision
integral.

Consider, by way of illustration, the Chapman-Enskog approach applied to the
Boltzmann equation with a relaxation form of the collisional operator. Suppose then
that we consider a gas of particles governed by

@f

@t
C vk

@f

@xk
D Q.f; f / D ��.f � f0/;

where � D O.1="/ and the equilibrium distribution is the Boltzmann-Maxwellian
distribution,

f0 D n
� m

2�kT

�3=2
exp

�

�m.v � u/2

2kT

�

(3.10)

D n

�
ˇ

�

�3=2
e�ˇc2 ; (3.11)

where c D v�u and ˇ D m=.2kT /. We expand as before f D f0C"f1C"2f2C� � �
to obtain

@f0

@t
C vk

@f0

@xk
D ��f1:

Hence, for the relaxation time operator, solving for f1 is straightforward. The left-
hand side of the reduced Boltzmann equation can be evaluated since f0 is the
Maxwellian distribution. Thus,

@f0

@t
D f0

�
1

n

@n

@t
� 3

2

1

T

@T

@t
C m

kT
.v � u/ � @u

@t
C m

2kT
.v � u/2

1

T

@T

@t

�

:

To evaluate the time derivatives, we employ the zeroth-order or Euler form of the
fluid equations (i.e., that are solved exactly by the Maxwell-Boltzmann distribution).
We therefore have

@n

@t
C @

@xk
.nuk/ D 0I

n

�
@ui
@t

C uk
@ui
@xk

�

D � 1

m

@pik

@xk
I (3.12)

@

@t
.nkT /C uk

@

@xk
.nkT /C 5

3
nkT

@ui
@xi

D 0;

from which we can express the time derivatives in terms of spatial derivatives, i.e.,
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1

n

@n

@t
D �@uk

@xk
� uk
n

@n

@xk
I

1

T

@T

@t
D �2

3

@uk
@xk

� uk
T

@T

@xk
I

@ui
@t

D �uk
@ui
@xk

� 1

mn

@p

@xi
:

This then yields, assuming p D nkT ,

1

f0

@f0

@t
D �uk

�
mc2

2kT
� 3

2

�
1

T

@T

@xk
� ck

T

@T

@xk

� m

kT

�

ciuk C 1

3
c2ıki

�
@ui
@xk

� uk
n

@n

@xk
� ci

n

@n

@xi
:

By taking the spatial derivative of f0, we can derive after a little algebra,

vk
@f0

@xk
D f0

�
vk
n

@n

@xk
C vk

�
mc2

2kT
� 3

2

�
1

T

@T

@xk
C m

kT
vkci

@ui
@xk

�

:

Combining these expression yields

��f1 D f0

�
m

kT

�

ci ck � 1

3
c2ıki

�
@ui
@xk

C ck

�
mc2

2kT
� 5

2

�
1

T

@T

@xk

�

:

It is easily established that f1 does not introduce collisional source terms.
For the Euler equations, we have the relations (which is seen by taking moments

of the Maxwell-Boltzmann equation)

Pij D pıij and qi D 0;

for the pressure tensor and the heat flux vector. To determine the corrections to the
Euler equations, we need to evaluate

p1ij D m

Z
ci cj f1d

3v; q1i D m

2

Z
ci c

2f1d
3v;

since Pij D pıij C p1ij and qi D 0C q1i . Consider the contributions term-by-term
and use dv1dv2dv3 D dc1dc2dc3. The first term is

m2

kT

Z 1

�1

Z 1

�1

Z 1

�1
ci cj ckclf0dc1dc2dc3

@ul
@xk

:

For the moment, we suspend the convention that repeated indices implies
summation.
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Case 1: i D j , i ¤ k ¤ l , p1ii :

m2

kT

Z 1

�1

Z 1

�1

Z 1

�1
c2i ckclf0dc1dc2dc3

@ul
@xk

D m2

kT

Z 1

�1

Z 1

�1
c2i ckn

� m

2�kT

�3=2
e�ˇ.c2i Cc2k/�1

2ˇ
e�ˇc2l

ˇ
ˇ
ˇ
ˇ

1

�1
dcidck

@ul
@xk

D 0:

Case 2: i D j , i ¤ k D l , p1ii :

m2

kT

Z 1

�1

Z 1

�1

Z 1

�1
c2i c

2
kf0dc1dc2dc3

@uk
@xk

D m2

kT
n
� m

2�kT

�3=2 p
�

2ˇ3=2

p
�

2ˇ3=2

r
�

ˇ

@uk
@xk

D nkT
@uk
@xk

:

Case 3: i D k, j D l , p1ij :

m2

kT

Z 1

�1

Z 1

�1

Z 1

�1
c2i c

2
j f0dc1dc2dc3

@uj
@xi

D nkT
@uj
@xi

:

Case 4: i D l , j D j , p1ij :

m2

kT

Z 1

�1

Z 1

�1

Z 1

�1
c2i c

2
j f0dc1dc2dc3

@uj
@xi

D nkT
@uj
@xi

:

Case 5: i ¤ j , k D l , p1ij :

m2

kT

Z 1

�1

Z 1

�1

Z 1

�1
ci cj c

2
kf0dc1dc2dc3

@uj
@xi

D 0:

Consider the term 1
3
c2ıkl@ul =@xk . The pressure moment then yields

1

3

m2

kT

Z 1

�1

Z 1

�1

Z 1

�1
ci cj c

2f0dc1dc2dc3
@uk
@xk

:

Case 1: i ¤ j , p1ij :

1

3

m2

kT

Z 1

�1

Z 1

�1

Z 1

�1
ci cj .c

2
1 C c22 C c23/f0dc1dc2dc3

@uk
@xk

D 0:
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Case 2: i D j , p1ii :

1

3

m2

kT

Z 1

�1

Z 1

�1

Z 1

�1
c2i .c

2
1 C c22 C c23/f0dc1dc2dc3

@uk
@xk

D 2

3
nkT

@uk
@xk

C 1

3

m2

kT

Z 1

�1

Z 1

�1

Z 1

�1
c4i f0dc1dc2dc3

@uk
@xk

D 2

3
nkT

@uk
@xk

C nkT
@uk
@xk

:

Hence, collecting terms / @ul =@xk yields

m

kT

Z 1

�1

Z 1

�1

Z 1

�1
ci cj

�

ckcl � 1

3
c2ıkl

�

f0d
3c
@ul
@xk

D nkT

�
@ui
@xj

C @uj
@xi

� 2

3

@ui
@xi

�

:

Consider now terms / .1=T /@T=@xk , so we need evaluate terms like

m

2kT

Z 1

�1

Z 1

�1

Z 1

�1
ci cj ckc

2f0d
3cI

5

2

Z 1

�1

Z 1

�1

Z 1

�1
ci cj ckf0d

3c:

It is easily checked that these terms are all zero. Consequently, the pressure can be
expressed as the sum of the zeroth-order and first-order terms,

pij D pıij � �
�
@ui
@xj

C @uj
@xi

� 2

3
ıij
@uk
@xk

�

;

where

� D mnkT

�
;

is the coefficient of viscosity. The term in brackets is the rate-of-strain tensor. It is
left as an exercise to show that the heat flux vector can be written as

qi D �� @T
@xi

; � D 5

2

nk2T

m�
;

and � is the coefficient of heat conduction.
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The Navier-Stokes equations can therefore be expressed as

@n

@t
C @

@xi
.nui / D 0I

n

�
@ui
@t

C uk
@ui
@xk

�

D � 1

m

@p

@xi
C @

@xj

�

�

�
@ui
@xj

C @uj
@xi

� 2

3
ıij
@ui
@xi

��

I

n

�
@e

@t
C uk

@e

@xk

�

D r � .�rT / � pr � u C ˚; (3.13)

where ˚ is the viscous flux.

Exercises

1. Complete the details for the derivation of the expressions above for @f0=@t
and @f0=@xk . Use these results to complete the derivation of the expression
for f1.

2. Consider the 1D pdf

f .x/ D
r
ˇ

�
e�ˇx2 : � 1 < x < 1

Show that the moment generating function is given by M.t/ D exp
�
t 2=4ˇ

�
.

Derive the expectations E.X/, E.X2/, E.X3/, E.X4/, E.X5/, and E.X6/.
Hence show that the integrals

p
�

2ˇ3=2
D
Z 1

�1
x2e�ˇx2dx;

3
p
�

4ˇ5=2
D
Z 1

�1
x4e�ˇx2dx;

15
p
�

8ˇ7=2
D
Z 1

�1
x6e�ˇx2dx:

3. Show that the Chapman-Enskog expression for f1 satisfies the constraints

Z
f1d

3v D 0;

Z
cf1d3v D 0;

Z
c2f1d

3v D 0:

4. Show that the terms / .1=T /@T=@xk in the pressure moment term vanish
identically.

5. Show that the heat flux vector is given by

qi D �� @T
@xi

; � D 5

2

nk2T

m�
;

where � is the coefficient of heat conduction.
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3.7 Application 1: Structure of Weak Shock Waves

By way of application, consider the structure of weak shock waves derived as
solutions to first, the 1D Euler equations, and then the 1D Navier-Stokes equations.
The 1D Euler equations for an arbitrary adiabatic index � are given by

@�

@t
C @

@x
.�u/ D 0I (3.14)

�

�
@u

@t
C u

@u

@x

�

D �@p
@x

I (3.15)

@p

@t
C u

@p

@x
C �p

@u

@x
D 0; (3.16)

where � denotes the mass density, u the flow velocity, and p the adiabatic pressure.
Consider a characteristic time T and length scale L such that a characteristic phase
velocity Vp , to be identified, satisfies the relation

VpT

L
D 1:

This allows the Euler equations (3.14)–(3.16) to be expressed in dimensionless form
using the variables

Nx D x=L ) @

@x
D 1

L

@

@ Nx Nt D t=T ) @

@t
D 1

T

@

@Nt
N� D �=�0I Nu D u=VpI Np D p=p0;

where �0 and p0 are equilibrium values far upstream of any shock transition. We
then have

@ N�
@Nt C @

@ Nx . N� Nu/ D 0I

N�
�
@Nu
@Nt C Nu @Nu

@ Nx
�

D � a2c0
�V 2

p

@ Np
@ Nx I

@ Np
@Nt C Nu@ Np

@ Nx C � Np @Nu
@ Nx D 0;

where the square of the background sound speed a2c0 
 �p0=�0 has been introduced.
If we make no assumptions about the magnitude of the normalized sound speed, then
there are no natural time or length scales in the system. Nonetheless, we expect that
the quadratically nonlinear terms in (3.14)–(3.16) will lead to the “steepening” of
wave forms over a long time. Introduce therefore the fast and slow variables



3.7 Application 1: Structure of Weak Shock Waves 99

� D Nx � Nt I 
 D "Nt ) @

@ Nx D @�

@ Nx
@

@�
D @

@�
I @

@Nt D "
@

@

� @

@�
;

and expand the flow variables about a uniform far-upstream background,

N� D 1C "�1 C "2�2 � � � I
Nu D "u1 C "2u2 C � � � I
Np D 1C "p1 C "2p2 C � � � :

On substituting the new time and spatial coordinates 
 and � and expanding the state
variables, we get, for example,

�

"
@

@

� @

@�

�
�
1C "�1 C "2�2 � � � �C

@

@�

	�
1C "�1 C "2�2 � � � � �"u1 C "2u2 C � � � �
 D 0:

Collecting terms of different orders of " for each of the normalized Euler equa-
tions (3.14)–(3.16), we find (Exercise)

O."/ W �@�1
@�

C @u1
@�

D 0I

�@u1
@�

C Na2c0
�

@p1

@�
D 0I

�@p1
@�

C �
@u1
@�

D 0;

which, for uniform upstream conditions, yields the relations

p1 D �u1I �1 D u1I u1 D Na2c0
�
p1:

The last of the relations imposes a compatibility condition on the sound and phase
speed since

u1 D Na2c0
�
�u1 , a2c0 D V 2

p ;

corresponding to the dispersion relation of the system. The expansion is therefore
following the propagation of a sound mode in the fluid. To determine the nonlinear
evolution of the wave, consider the expansion at order "2,
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O."2/ W �@�2
@�

C @u2
@�

D �@�1
@


� @

@�
.�1u1/ I

�@u2
@�

C Na2c0
�

@p2

@�
D �@u1

@

C �1

@u1
@�

� u1
@u1
@�

I

�@p2
@�

C �
@u2
@�

D �@p1
@


� u1
@p1

@�
� �p1 @u1

@�
:

By substituting for �1 and p1 using the O."/ relations, we may combine the O."2/
equations as a single nonlinear partial differential equation in u1 after eliminating
the second terms with the dispersion relation (Exercise)

@u1
@


C � C 1

2
u1
@u1
@�

D 0: (3.17)

This is the simplest quasilinear nonlinear wave equation and is sometimes called the
inviscid form of Burgers’ equation. Suppose we have initial data

u1.�; 0/ D f .�/;

where f .�/ is a given smooth function. To solve the initial value problem generally,
we parameterize the initial curve as

� D �; 
 D 0; u1 D f .�/:

The characteristic equations are

d�

ds
D � C 1

2
u1;

d


ds
D 1;

du1
ds

D 0;

with initial conditions at s D 0 given by the initial curve. Evidently, the last relation
shows that u1.s; �/ is constant along the characteristic curves. Therefore,

u1.s; �/ D u1.0; �/ D f .�/:

We can therefore immediately solve for � and 
 , finding that

�.s; �/ D �C s
� C 1

2
f .�/; 
.s; �/ D s:

This system can be inverted generally to give s D 
 and � D �.�; 
/ and

u1 D f Œ�.�; 
/�;
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or since s D 
 and � D � � s.� C 1/f .�/=2 D � � .� C 1/=2 � u1
 , we have the
implicit solution

u1 D f .� � .� C 1/=2 � u1
/ :

An obvious but important point about the solution u1 D u1.�; 
/ is that the two
characteristic equations imply

d�

d

D � C 1

2
u1:

Thus, the greater the amplitude ju1.�; 
/j of the wave, the greater the speed of
the corresponding point x on the wave. Assuming u1 > 0, points � where
u1.�; 
/ has larger values and the wave is higher move more rapidly to the
right than points � where u1.�; 
/ has smaller values and the wave is of lower
amplitude. If, initially, there are portions of the wave form located to the left
or the rear of the lower portions, the higher points may eventually catch up and
pass the lower points, at which time the wave is said to break. At the time
of breaking, the wave is multi-valued and is no longer a valid solution of the
inviscid Burgers’ equation. To avoid wave breaking and the introduction of multi-
valued solutions, we can try to introduce higher-order derivatives that can act to
smooth the discontinuity. This is discussed below on the basis of the Navier-Stokes
equations.

Alternatively, we can introduce a discontinuous solution – a shock wave – that
extends the validity of the solution beyond the breaking time. To determine the
breaking time, we use u1.s; �/ D f .�/ and � D � C .� C 1/=2 � u1
 and implicit
differentiation to find the slope of the wave

@u1
@�

D f 0 .�/
1C Œ.� C 1/=2�
f 0.�/

:

Hence for f 0.�/ < 0, the slope u1x becomes infinite and the wave begins to break
when


 D � 2

� C 1

1

f 0.�/
;

has the smallest non-negative value 
0. This condition corresponds to intersection
of the characteristics.

To extend the solution beyond the breaking time, we need to define weak
solutions which exist beyond the time 
0. We can write the wave equation (3.17)
in conservation form

.u1/
 C
�
1

2
u21

�

�

D 0;

where we introduced the normalization � D �=Œ.� C 1/=2� for convenience.
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3.7.1 Weak Solutions and the Rankine-Hugoniot Relations

In view of the inviscid form of Burgers’ equation above, consider more generally
nonlinear equations expressed in the conservation form

ut C .f .u//x D 0: (3.18)

For notational convenience, let F 
 .f .u/; u/ and note that

DivF D 0;

is equivalent to (3.18) provided we introduce the spacetime divergence
Div.f1; f2/ 
 .f1/x C .f2/t . Let � be a smooth function with compact support in
the .x; t/ plane, meaning that � is zero outside a compact set. We may therefore
express (3.18) in the weak form

Z
� � DivFdxdt D 0;

for all �. On integrating by parts, and using the compact support of �, yields at once

Z
Grad� � Fdxdt D 0: (3.19)

If u is smooth, then the differential form (3.18) and the integral form (3.19) are
equivalent. However, if u is not smooth, then the latter expression (3.19) remains
valid unlike the differential expression (3.18). A weak solution of the differential
equation (3.18) is one that satisfies (3.19) for all smooth � with compact support.

Besides the differential (3.18) and weak form (3.19), we can also express (3.18)
as an integral form. Suppose we consider the interval Œa; b� on the x-axis, so that
from (3.18)

d

dt

Z b

a

udx D
Z b

a

ut dx D �
Z b

a

.f .u//x dx D � f .u/jba :

A weak solution does not have to be differentiable, and neither does a function that
satisfies the integral form of the equations. A weak solution does satisfy the integral
form of the equation, and therefore weak solutions are the objects that we seek when
a flow is discontinuous. This result is straightforward to show in general but we omit
the details here.

Let us consider the conservation law (3.18) and the weak formulation (3.19)
in the presence of a jump discontinuity. Suppose u is a weak solution with a jump
discontinuity across a smooth curve ˙ in the .x; t/ plane, and let � be a smooth
function with compact support on the closed region S . This is illustrated in Fig. 3.5.
The closed region can be expressed as S D S1 [ S2. Then
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S

x

t

S2

S1

n

Σ

Fig. 3.5 Spacetime plot
illustrating a region S in
which � is a smooth function
that vanishes outside S . The
jump discontinuity is denoted
by ˙

0 D
Z

Grad� � Fdxdt D
Z

S1

Grad� � Fdxdt C
Z

S2

Grad� � Fdxdt:

For u smooth in the regions S1 and S2, we have

Z

S1

Grad� � Fdxdt D
Z

S1

Div .�F/ dxdt �
Z

S1

�DivFdxdt

D
Z

˙

�F � nds �
Z

S1

�DivFdxdt:

The last term above is zero since in the region S1 where u is smooth, DivF D 0,
thus yielding

Z

S1

Grad� � Fdxdt D
Z

˙

�F1 � nds;

where the notation F1 means that u is evaluated by taking the limit from the region
S1. In similar fashion, one has

Z

S2

Grad� � Fdxdt D �
Z

˙

�F2 � nds;

and the negative sign is because the outward normal n for S1 is the inward normal
for S2. We therefore immediately obtain

Z

˙

� .F1 � F2/ � nds D 0;

which is valid for all �. It therefore follows that the jump condition

ŒF � n� D 0

holds generally on the curve ˙ , and ŒF � n� 
 F1 � n � F2 � n denotes the jump in
F � n across ˙ .
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Suppose we parameterize ˙ by x D x.t/ so that the speed of the discontinuity
is s 
 dx=dt . The normal n may then be expressed as

n D .1;�s/p
s2 C 1

;

and with F D .f .u/; u/, we can express the jump condition as

� sŒu�C Œf .u/� D 0 (3.20)

on ˙ . Equation (3.20) is the constraint that the weak form of the equations (3.19)
imposes on the values of u on both sides of the discontinuity. Notice that for the
inviscid form of Burgers’ equation, we have

� sŒu�C 1

2
Œu2� D 0: (3.21)

Hence,

s D u0 C u1
2

; (3.22)

is the shock jump relation for the inviscid Burgers’ equation, connecting the speed of
propagation s of the discontinuity with the amounts by which the velocity u jumps.
The subscripts 0 (front) and 1 (back) denote the different sides of the discontinuity.

The above analysis holds exactly for systems of conservation laws where we use
the vector unknown u. The Euler equations are an example, and in this case satisfy
the one-dimensional Rankine-Hugoniot conditions

s Œ�� D Œ�u� 
 Œm�I
s Œ�u� D 	

�u2 C P

 I (3.23)

sŒe� D Œ.e C p/u� ;

where we have introduced the total energy

e 
 1

2
�u2 C P

� � 1 D 1

2
�u2 C �":

Here, " D P=.�.� � 1// is the expression for the internal energy.
Since the Euler equations are Galilean invariant, we may transform the Rankine-

Hugoniot conditions into a coordinate system moving with a uniform velocity
such that the speed of the discontinuity is 0. The steady-state Rankine-Hugoniot
conditions can then be written as

�0u0 D �1u1I (3.24)

�0u
2
0 C p0 D �1u

2
1 C p1I (3.25)

.e0 C p0/ u0 D .e1 C p1/ u1: (3.26)
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As defined above, if we let m D �0uo D �1u1, we can distinguish between two
classes of discontinuity. Ifm D 0, the discontinuity is a contact discontinuity or slip
line. Since u0 D u1 D 0, these discontinuities convect with the fluid. From (3.25),
we observe that p0 D p1 across a contact discontinuity but in general �0 ¤ �1. By
contrast, if m ¤ 0, then the discontinuity is called a shock wave. Since u0 ¤ 0 and
u1 ¤ 0, the gas crosses the shock, or equivalently, the shock propagates through
the fluid. The side of the shock that comprises gas that has not been shocked is the
front or upstream of the shock, and the shocked gas is the back or downstream of
the shock. A detailed discussion of the properties of gas shocks based on the Euler
equations can be found in Landau and Lifshitz (2000).

Exercises

1. Explicitly derive the O."/ and O."2/ expansions of the Euler equations.
2. As outlined in the text, derive the nonlinear wave equation (3.17).
3. Solve the linear wave equation

ut C cux D 0; c D const.

with u.x; t D 0/ D f .x/. Write down the solution if f .x/ D sin kx.
4. Consider the initial data

U.x; 0/ D
�
0; x � 0;

1 x < 0

for the partial differential equation written in conservative form

Ut C
�
1

2
U 2

�

x

D 0:

Sketch the characteristics. What is the shock propagation speed necessary to
prevent the characteristics from crossing?

5. From the stationary Rankine-Hugoniot conditions (3.24)–(3.26), show that

m2 D p0 � p1

0 � 
1 ;

where 
 
 1=�. Show that

e0
0 � e1
1 D p1
1 � p0
0;
and hence that

"1 � "0 C p0 C p1

2
.
1 � 
0/ D 0;

(the Hugoniot equation for the shock) where " 
 1
��1p
 .
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We have seen that the weak shock limit of the Euler equations leads to an
equation that required the introduction of discontinuous shock jumps to connect
solutions when the wave breaking occurs. The inviscid Burgers’ equation might
be thought of as the limit in which the coefficient of a higher order derivative
vanishes. This suggests that we should consider higher-order corrections to the Euler
equations that admit second-order and possibly higher order derivatives. As we have
seen, the simplest example is the Navier-Stokes equations. Consider the 1D form of
the equations. Then

X

i

pi i D 3p �
X

i

�

�
@ui
@xi

C @ui
@xi

� 2

3

@uk
@xk

ıi i

�

D 3p:

The internal energy is therefore simply

" D 3

2

p

n
:

Finally, we need

X

j

uj pij D up11 D up � u
4

3
�
@u

@x
;

from which we obtain the total energy equation as

@

@t

�

n

�

"C 1

2
u2
��

C @

@x

�

nu

�

"C 1

2
u2
�

C up � u
4

3
�
@u

@x
� �@T

@x

�

D 0:

The corresponding momentum equation can be expressed as

�

�
@u

@t
C u

@u

@x

�

D �@p
@x

C @

@x

�
4

3
�
@u

@x

�

:

On expanding the energy equation and using the continuity equation and the
momentum equation and the result

n
De

Dt
D 3

2

Dp

Dt
C 3

2
p
@u

@x
;

where D=Dt D @=@t C u@=@x is the convective derivative, we find

3

2

Dp

Dt
C 5

2
p
@u

@x
D 4

3
�

�
@u

@x

�2
C @

@x

�

�
@T

@x

�

:
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To summarize, the 1D Navier-Stokes equations are therefore given by the higher-
order system of equations

@�

@t
C @

@x
.�u/ D 0I (3.27)

�

�
@u

@t
C u

@u

@x

�

D �@p
@x

C @

@x

�
4

3
�
@u

@x

�

I (3.28)

@p

@t
C u

@p

@x
C �p

@u

@x
D 8

9
�

�
@u

@x

�2
C @

@x

�
2

3
�
@T

@x

�

; (3.29)

and p D nkT .
We normalize the Navier-Stokes equations in the same way that we normalized

the Euler equations except that we introduce Np D p=�0V
2
p . This yields

@�

@t
C @

@x
.�u/ D 0I

�

�
@u

@t
C u

@u

@x

�

D �@p
@x

C @

@x

�
4

3

1

Re

@u

@x

�

I

@p

@t
C u

@p

@x
C �p

@u

@x
D 8

9

1

Re

�
@u

@x

�2
C @

@x

�
5

3
�
@T

@x

�

;

where for convenience we have omitted the bars. We have also used the normaliza-
tion T0 D mV 2

p =k, where k is Boltzmann’s constant. In the normalized equations,
we have introduced the dimensionless Reynolds number

Re 
 �0VpL

�
;

which is therefore a measure of the relative importance of a fluids inertia and
viscosity. Thus, if viscous forces dominate, as in the case of a flow very near a
body, then Re is small. If on the other hand, inertial effects dominate, then Re is
large. Problems for which Re are typically large include turbulent flows, inviscid
flows, potential flows, and flows well removed from boundaries. Cases where Re
is small include laminar flows, bubble flows, and flows close to a boundary. The
remaining nondimensional number is related to the Prandtl number, and is given by

� 
 �

VpL�0

2m

5k
;

and 2m=5k is the specific heat of a monatomic gas at constant pressure. The Prandtl
number is essentially the ratio of the heat conductivity and the viscosity,

P r D �

�

2m

5k
;
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so that

��1 D 1

�P r

5

2
�0VpL:

To derive the weak shock equation from the Navier-Stokes equations, we use
again the multiple scales method. An important step in the multiple scales analysis
is the relative ordering of the dissipative or dispersive terms, both of which are
assumed to be small. To isolate the richest possible evolution equation from the
Navier-Stokes equations, we impose the most general scaling onRe�1 and �, which
is that both areO."/. As before, we use the slow and fast scales and expand the flow
variables about a uniform far-upstream background,

N� D 1C "�1 C "2�2 � � � I
Nu D "u1 C "2u2 C � � � I
Np D p0 C "p1 C "2p2 C � � � I

kT D p

n
D p0 C ".p1 � p0n1/C "2.p2 � n1p1 C p0n

2
1/C � � �

D k.T0 C "T1 C � � � /:

On expanding to O."/, we obtain

@�1

@�
D @u1

@�
I @u1

@�
D @p1

@�
I @p1

@�
D �p0

@u1
@�
:

These are the same as for the Euler equation case discussed above. This yields
the eigenrelations and acoustic dispersion equation of before (although normalized
slightly differently)

�1 D u1I p1 D u1I p1 D �p0u1 ) �p0 D 1 , V 2
p D a2c0:

At the O."2/ expansion, we find

�@�2
@�

C @u2
@�

D �@u1
@


� @u21
@�

I

�@u2
@�

C @p2

@�
D �@u1

@

� u1

@u1
@�

� �1 @u1
@�

C @

@�

�
4

3

1

Re

@u1
@�

�

I

�@p2
@�

C �p0
@u2
@�

D �@u1
@


� .� C 1/u1
@u1
@�

C @

@�

�
5

3
�
@T1

@�

�

;
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where kT1 D p1 � n1 D u1.m � 1/=m, and m is the mass of a gas molecule. Use
of the normalized acoustic dispersion relation 1 D �p0 yields a general form of
Burgers’ equation

@u1
@


C � C 1

2
u1
@u1
@�

D @

@�

�
4

3

1

Re

@u1
@�

�

C @

@�

�
5

3
�
@u1
@�

�

; (3.30)

which resembles the inviscid nonlinear wave equation derived above except that
dissipation terms in the form of the second-order spatial derivatives are now present.
Physically, the importance of the dissipative terms will depend on the value of the
Prandtl number P r . If P r � 1, then the heat conduction term dominates and
determines the characteristic length scale for a shock transition.

For notational convenience, consider instead the canonical form of Burgers’
equation

ut C uux D �uxx; (3.31)

which is straightforwardly obtained from (3.30). The steady-state form of the shock
structure equation (3.31) satisfies

�VpuX C uuX D �uXX ; X 
 x � Vpt:

Hence

1

2
u2 � Vpu C C D �uX :

If u ! u1; u2 as X ! ˙1 and uX.˙1/ D 0, then

Vp D u1 C u2
2

; C D 1

2
u1u2;

and the equation may be written

.u � u1/.u � u2/ D �2�uX :

The solution is simply

X D 2�

u2 � u1
log

ˇ
ˇ
ˇ
ˇ
u � u1
u � u2

ˇ
ˇ
ˇ
ˇ ; u1 ¤ u2;

which yields

u D u1 C u2 � u1
1 � exp

	 u2�u1
2�

.x � Vpt/

 ; Vp D u1 C u2

2
:
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This solution illustrates that the discontinuity of the shock is smoothed by the
dissipative term in Burgers’ equation and the length scale of the transition is
determined by diffusion coefficient �=Vp . The steady-state Burgers’ equation
solution can be expressed in terms of a hyperbolic tan (tanh) function (Exercise).

Exercises

1. Show that the Cole-Hopf transformation

u D �2� �x
�
;

removes the nonlinear term in the Burgers’ equation

ut C uux D �uxx;

and yields the heat equation as the transformed equation. For the initial problem
u.x; t D 0/ D F.x/, show that this transforms to the initial problem

� D ˚.x/ D exp

�

� 1

2�

Z x

0

F.�/d�

�

; t D 0;

for the heat equation. Show that the solution for u is

u.x; t/ D
R1

�1
x��
t
e�G=2�d�

R1
�1 e�G=2�d�

;

where

G.�I x; t/ D
Z �

0

F.�0/d�0 C .x � �/2
2t

:

2. Show that the characteristic form of the steady Burgers’ equation admits a
solution that can be expressed as a hyperbolic tan tanh profile given u.�1/ D
u0 and u.1/ D u1.

3.8 Application 2: The Diffusion and Telegrapher Equations

A basic problem in space physics and astrophysics is the transport of charged
particles in the presence of a magnetic field that is ordered on some large scale
and highly random and temporal on other smaller scales. This will be considered in
more detail later. Here we discuss a simplified form of the Fokker-Planck transport
equation that describes particle transport via particle scattering in pitch-angle in
a magnetically turbulent medium since it resembles closely the basic Boltzmann
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equation. In the absence of both focusing and adiabatic energy changes, the BGK
form of the Boltzmann equation reduces to the simplest possible integro-differential
equation,

@f

@t
C �v

@f

@r
D hf i � f



; (3.32)

where f .r; t; �; v/ is a gyrophase averaged velocity distribution function at position
r and time t for particles of speed v and pitch-angle cosine � D cos 
 . Observe
that � 2 Œ�1; 1�. Here, we are no longer restricting ourselves to the equilibrium
Boltzmann distribution but instead define

hf i 
 1

2

Z 1

�1
fd�;

as the mean or isotropic distribution function averaged over �. Finally, as before, 

is the collision time. We follow the approach of Zank et al. (2000).

To solve (3.32), we may exploit� 2 Œ�1; 1� and expand f .r; t; �; v/ in an infinite
series of Legendre polynomials Pn.�/,

f D 1

2

1X

nD0
.2nC 1/Pn.�/fn.r; t; v/;

where fn.r; t; v/ is the nth harmonic of the scattered distribution function

fn.r; t; v/ D
Z Z

f .r; t; �; v/Pn.�/d˝ D 2�

Z 1

�1
Pn.�/f .r; t; �; v/d�;

and

P0.�/ D 1I P1.�/ D �I P2.�/ D 1

2
.3�2 � 1/I : : : ;

are the first three Legendre polynomials. The Legendre polynomials are mutually
orthogonal, satisfying the orthogonality condition,

Z 1

�1
Pm.�/Pn.�/d� D

(
0 m ¤ n
2

2nC1 m D n
;

and form an infinite basis set about which to expand the distribution function.
By means of the recurrence relation

.nC 1/PnC1 C nPn�1 D .2nC 1/�Pn; n D 1; 2; 3; : : : ;
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we can use the polynomial expansion and the orthogonality of the Legendre
polynomials to reduce the BGK Boltzmann equation (3.32) to an infinite set of
partial differential equations

.2nC 1/
@fn

@t
C .nC 1/v

@fnC1
@r

C nv
@fn�1
@r

C .2nC 1/
fn



D .2nC 1/

f0



ın0;

n D 0; 1; 2; : : : ; (3.33)

where ıij D 0 (i ¤ j ) or 1 (i D j ).
The problem, of course, that one is faced with in solving the infinite set of

equations (3.33) corresponds to the standard closure problem, this time expressed
as a decision about the order at which to truncate the series. This is commonly
addressed by simply truncating the infinite set of equations at some arbitrary order
with the hope that this does not introduce any unphysical character into the reduced
model. Typically, truncations are made at the lowest order possible. For the f1
approximation (i.e. assume fn D 0 8 n � 2), we have

@f0

@t
C v

@f1

@r
D 0I (3.34)

@f1

@t
C v

3

@f0

@r
D �f1



; (3.35)

which can be combined to yield the homogeneous telegrapher equation



@2f0

@t2
C @f0

@t
� � @

2f0

@r2
D 0; (3.36)

where the spatial diffusion coefficient � D 1
3
v2
 has been introduced. Before

considering the properties of the telegrapher equation, notice that if, in Eq. (3.35),
we assume that the “inertial” term @f1=@t ' 0 compared to the remaining
more rapidly varying terms (cf., the discussion related to the Chapman-Enskog
expansion), then combining the f1 approximation equations yields

f1 D �v


3

@f0

@r
) @f0

@t
� � @

2f0

@r2
D 0; (3.37)

which is the classical diffusion equation.
Consider the properties of the transport equation expressed by the telegrapher

equation. The telegrapher equation can be expressed in matrix form

@

@t

�
f0
f1

�

C
�
0 v

v=3 0

�
@

@r

�
f0
f1

�

D
�

0

�f1=

�

:
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r 

t 

r 

t 
a b

Fig. 3.6 The space-time plane showing the characteristics r D ˙vt=
p
3 (a) for the f1 truncation,

and (b) the offset characteristics for the f4 truncation. Note the presence in (b) of two forward and
two backward characteristics and a stationary or non-propagating characteristic

This is a hyperbolic system and the characteristics are determined by solving the
characteristic equation jA��I j D 0 for �, where A is the matrix above and I is the
identity matrix. Thus

jA � �I j D
ˇ
ˇ
ˇ
ˇ
�� v
v=3 ��

ˇ
ˇ
ˇ
ˇ D �2 � v2

3
D 0;

yields the characteristic or “sound” speeds for the system

� D ˙ vp
3

and characteristic equations
dr

dt

ˇ
ˇ
ˇ
ˇ˙

D ˙ vp
3
:

Consequently, particles released at some initial time in a 1D scattering medium
propagate in opposite directions at the fixed speed ˙v=

p
3 in the limit that

their transport is described by the telegrapher equation. This is illustrated in the
space-time diagram Fig. 3.6 that shows the characteristics ˙vt=

p
3 along which

information propagates.
Exact solutions to the telegrapher equation for initial data can be derived and

can be expressed in terms of the modified Bessel function of order 0. A somewhat
more revealing approach is to use asymptotic expansions since this clarifies the late-
time evolution of the solution to the telegrapher equation. For convenience, let us
normalize the telegrapher equation (3.36) by introducing new time and space scales
according to Nt D t=
 , Nr D x=L, and ensuring that L2=
 D �. This then yields the
canonical form

@2f

@t2
C @f

@t
� @2f

@r2
D 0; (3.38)

after dropping the bars and the 0 subscript for convenience.
Since the telegrapher equation is a second-order (dissipative) equation, the

Cauchy problem requires that we specify smooth initial data f .r; 0/ and ft .r; 0/
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at t D 0, and we seek solutions for t > 0, �1 < r < 1. Let F.!; t/ be the
Fourier transform of f .r; t/,

F.!; t/ D 1p
2�

Z 1

�1
ei!rf .r; t/dr;

so that the transformed equation becomes

@2F

@t2
C @F

@t
C !2F D 0; t > 0:

The initial values are similarly transformed but we are not particularly concerned
about the specific data since we seek to characterize the solution in general terms.
The solution to the transformed equation is simply

F.!; t/ D FC.!/ exp

��

�1
2

C 1

2

p
1 � 4!2

�

t

�

C F�.!/ exp

��

�1
2

� 1

2

p
1 � 4!2

�

t

�

;

and the inverse transform therefore yields

f .r; t/ D 1p
2�

Z 1

�1
FC.!/ exp

��

�1
2

C 1

2

p
1 � 4!2

�

t � i!r
�

d!

C 1p
2�

Z 1

�1
F�.!/ exp

��

�1
2

� 1

2

p
1 � 4!2

�

t � i!r
�

d!;

where F˙.!/ is specified by the initial data.
To examine the behavior in the limit of large time t , it is evident that for !2 > 1

4
,

we have
p
1 � 4!2 D i

p
4!2 � 1, so that

exp

��

�1
2

˙ 1

2

p
1 � 4!2

�

t

�

D e�t=2 exp

�

˙ i

2

p
4!2 � 1t

�

; !2 >
1

4
:

We then obtain
ˇ
ˇ
ˇ
ˇ
ˇ
1p
2�

Z

!2> 1
4

F˙.!/e�t=2 exp

�

˙ i

2

p
4!2 � 1t � i!r

�

d!

ˇ
ˇ
ˇ
ˇ
ˇ

� e�t=2
p
2�

Z 1

�1
jF˙j .!/d! � Me�t=2

p
2�

;

for constant M . Thus, the contributions to both integrals are exponentially small
whenever !2 > 1

4
for large t . For values !2 � 1

4
, we have
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exp

��

�1
2

C 1

2

p
1 � 4!2

�

t

�

� e0 D 1; !2 � 1

4
I

exp

��

�1
2

� 1

2

p
1 � 4!2

�

t

�

� e�t=2; !2 � 1

4
:

The latter exponential is maximum for ! D ˙ 1
2

and the first when ! D 0. Hence,
the entire F�.!/ integral is bounded over the full interval of integration since

ˇ
ˇ
ˇ
ˇ
1p
2�

Z 1

�1
F�.!/ exp

��

�1
2

� 1

2

p
1 � 4!2

�

t � i!r
�

d!

ˇ
ˇ
ˇ
ˇ

� e�t=2
p
2�

Z 1

�1
jF�.!/j d!:

Consequently, the entire F�.!/ integral is bounded by .M=
p
2�/e�t=2 and decays

exponentially and uniformly in r as t ! 1. Thus, we expect the main contribution
to come from the FC.!/ integral as t ! 1. Since the FC integral decays for
all ! ¤ 0, the major contribution to the solution f .r; t/ must come from the
neighborhood of ! D 0. The asymptotic evaluation of the FC.!/ integral can
be accomplished using the method of Sirovich rather than the stationary phase
method.2 This is because the integral that we are interested in decays exponentially

2The Sirovich method proceeds as follows. Consider an integral of the form

I.r; t/ D
Z

1

�1

F.!/ expŒ�g.!/t � i!r�d!;

where the conditions (i)
R

1

�1
jF.!/jd! < M < 1; (ii) maxjF.!/j < M 8 !; (iii) < Œg.!/� �

0; (iv) g.!/ D 0 $ ! D 0; (v) g.!/ D i˛! C ˇ!2 C O.j!j3/, for ˛; ˇ real, ˇ > 0, ! ! 0,
and (vi) g.!/ is continuous in !, are all satisfied. Condition (v) is essentially a Taylor expansion
of g.!/ about ! D 0, recognizing that the maximum contribution comes from the neighborhood
of ! D 0. Then as t ! 1, we have

I.r; t/ D
Z

1

�1

F.!/ exp
	�ˇ!2t � i˛!t � i!r



d! CO

�
1

t1�ı

�

;

where ı is small positive constant. Recall that the notation OŒ� � � � means that if K.x/ D OŒG.x/�,
then jK.x/=G.x/j ! C for some constant C as x ! �. Thus, OŒ1=t1�ı � implies that as t ! 1
the error term above decays as C=t1�ı . Now expand F.!/ about ! D 0 and retain only the leading
term F.0/, to obtain

I.r; t/ �
Z

1

�1

F.0/ exp
	�ˇ!2t � i˛!t � i!r



d!:

This integral can be evaluated exactly, yielding

I.r; t/ �
r
�

ˇt
F.0/ exp

�

� .r C ˛t/2

4ˇt

�

; t ! 1:
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as the relevant parameter becomes large whereas in the stationary phase method,
the integral oscillates rapidly and the main contributions are due to the “slow”
oscillations.

As described in the footnote, we can use the Sirovich approximation to evaluate
the FC.!/ integral. Identify FC.!/=

p
2� with F.!/ and the term 1

2
� 1

2

p
1 � 4!2

with g.!/. We assume that FC.!/ satisfies conditions (i) and (ii), and we have (iii)

<
h
1
2

� 1
2

p
1 � 4!2

i
� 0 for �1 < ! < 1; (iv) 1

2
� 1

2

p
1 � 4!2 D 0 at ! D 0

only, and (v) 1
2

� 1
2

p
1 � 4!2 D 1

2
� 1

2
Œ1 � 2!2 C O.j!j3/ D !2 C O.j!j3/ as

! ! 0 on using the binomial expansion. Finally, since g.!/ is continuous for all
!, all the conditions on g.!/ are met. We therefore have

1p
2�

Z 1

�1
FC.!/ exp

��

�1
2

C 1

2

p
1 � 4!2

�

t � i!r
�

d! 
 FC.0/p
2t

exp

�

� r
2

4t

�

;

in the limit t ! 1. Hence, we find that asymptotically the solution for f .r; t/ is
given by

f .r; t/ 
 FC.0/p
2t

exp

�

� r
2

4t

�

D p
2�FC.0/ � 1p

4�t
exp

�

� r
2

4t

�

; t ! 1;

(3.39)

where we have expressed the solution in terms of the fundamental solution of
the heat or diffusion equation (3.37). On rewriting Eq. (3.39) in non-normalized
variables, we obtain

f .r; t/ 
 FC.0/p
2t=


exp

�

� r2

4�t

�

:

Evidently, f .r; t/ is nonzero essentially only in the parabolic region defined by
r2=.4t�/ D O.1/ since otherwise the exponential term is vanishingly small. This
solution behavior is illustrated in Fig. 3.7. The solution to the telegrapher equation
at long times is essentially diffusive, occurring in the wake of the wave fronts or
characteristics r D vt=

p
3 and yields the major contribution to the solution because

dissipation has damped everything else away. The decay of the “heat equation”-like
solution also occurs as t ! 1 but only algebraically like t�1=2 for r2 � 4t� rather
than exponentially as for all other values of r . It is worth noting that the asymptotic
solution to the telegrapher equation (and many others) is often more useful than the
exact solution in extracting the physical character of the solution.

The expanded system of partial differential equations (3.33) in the fn truncation
forms a linear hyperbolic system of pdes,

� t C vA� r D C;
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r

tFig. 3.7 The space-time
plane showing the
characteristics r D ˙vt=

p
3

for the telegrapher equation.
The characteristics bound the
solution space, and the
shaded region identifies the
long-time diffusion regime
into which solutions of the
telegrapher equation evolve

with a discrete spectrum of characteristic speeds. Here 	 
 .f0; f1; f2; : : : fn/
t ,

where t denotes transpose, A is the tridiagonal matrix

A D

0

B
B
B
B
B
B
B
B
B
B
@

0 1 0 0 0 � � � � � � 0
1
3
0 2
3
0 0 � � � � � � 0

0 2
5
0 3
5
0 � � � � � � 0

0 0 3
7
0 4

7
� � � � � � 0

:::
: : :

: : :
:::

0 0 0 0 � � � n�1
2n�1 0 n

2n�1
0 0 0 0 � � � 0 n

2nC1 0

1

C
C
C
C
C
C
C
C
C
C
A

;

and

C D 
�1 .0; f1; f2; : : : ; fn/t :

The characteristic equation jA � �Ij D 0 yields the n C 1 characteristics of the
linear hyperbolic system, all of which are distinct. When the truncation of (3.33) is
even, i.e. when n is even, the number of characteristics is odd, and consists of n=2
propagating information forward, n=2 propagating information backward, and one
that is stationary. For example, the f2 characteristics are

dr

dt

�

0;˙
D 0;˙

r
3

5
v ) r0;˙ D 0;˙

r
3

5
vt:

At the f1 (telegrapher equation) level of truncation, all scattered particles prop-
agate along ˙vt=

p
3 characteristics, whereas the f2 truncation is more refined,

substituting 0;˙
q

3
5
v for the speeds of the scattered particles. When n is odd,

the number of characteristics is even, with n=2 propagating information forward
and n=2 backward. No stationary or zero characteristic exists for the fn (n odd)
truncation, revealing that the even and odd closures are fundamentally different. By
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Fig. 3.8 Numerical comparison of solutions obtained using f1, f2, f3, and f4 truncations. The
scattered distribution fs is plotted for times ranging from early (t D 0:1 in normalized units) until
later

increasing the number of equations in the truncation (i.e. increasing n), the accuracy
with which information is propagated forwards and backwards is increased (see
Fig. 3.6). However, the odd truncation can never capture the non-propagating mode,
and is therefore always intrinsically less accurate than the even expansion, even
when the even truncation is of lower order. This is illustrated in Fig. 3.8 where the
method of characteristics is implemented numerically for the f1, f2, f3, and f4
truncations.

The telegrapher equation, and its higher-order truncations, does not capture the
early phases of particle propagation when particles have experienced little or no
scattering and the distribution is typically quite anisotropic. However, a simple
extension of the approach described here can capture the so-called flash phase
corresponding to early times of particle propagation (Zank et al. 2000).

Exercises

1. Legendre polynomials Pn.�/ and Pm.�/ satisfy Legendre’s differential equation

.1 � �2/y00 � 2�y0 C n.nC 1/y D 0; n D 0; 1; 2; : : : :
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Hence show that for n ¤ m, the orthogonality condition

Z 1

�1
Pm.�/Pn.�/d� D 0; n ¤ m:

2. The generating function for the Legendre polynomials is given by

L.�; t/ D .1 � 2�t C t 2/�1=2 D
1X

nD0
Pn.�/t

n; jt j < 1:

By differentiating the generating function with respect to t and equating coeffi-
cients, derive the recursion relation

.nC 1/PnC1 C nPn�1 D .2nC 1/�Pn; n D 1; 2; 3; : : : :

3. By using the generating function and Problem 1 above, show that

Z 1

�1
P 2
n .�/d� D 2

2nC 1
:

4. Complete the steps to derive the infinite set of partial differential equa-
tions (3.33).

5. Show that the integral

Z 1

�1
exp

	�ˇ!2t � i˛!t � i!r
 d! D
r
�

ˇt
exp

�

� .r C ˛t/2

4ˇt

�

:
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Chapter 4
Charged Particle Transport in a Collisional
Magnetized Plasma

4.1 The Kinetic Equation and Moments for a Magnetized
Plasma

A plasma is an admixture of charged particles – electrons, and possibly many
different populations of ions, including protons – each of which can be characterized
by their position x and velocity v, and, as with a gas, can be represented by a point
in the 6-dimensional phase space .x; v/. The distribution function fa.x; v; t / for a
particle species a is the number of particles of that species per unit volume in phase
space near the point .x; v/ at time t as before, i.e.,

fa.x; v; t /d 3xd3v

is the number of particles in the volume element d3xd3v about the point .x; v/. The
zeroth moment gives the number density na.x; t / of the a particles in real space. In
a plasma, each particle moves according to

Px D vI
Pv D qa

ma

.E C v � B/ ;

where qa denotes the electric charge of particle species a, ma the mass, E the
total electric field, and B the total magnetic field. Like the Boltzmann equation,
the distribution function obeys a conservation equation (since the number density is
conserved in phase space), so that if � 
 .x; v/, then P� D .Px; Pv/ or

@fa

@t
C @

@�

� P�fa
�

D 0:

G.P. Zank, Transport Processes in Space Physics and Astrophysics, Lecture Notes
in Physics 877, DOI 10.1007/978-1-4614-8480-6__4,
© Springer Science+Business Media New York 2014
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This of course corresponds to the magnetized form of the Boltzmann equation or
the Vlasov equation

@fa

@t
C v � rfa C qa

ma

.E C v � B/ � rvfa D 0; (4.1)

where we used

rv � .E C v � B/ D 0:

In the neighborhood of each discrete charged particle, the fields can be large and
dominate the macroscopic large-scale fields. Thus, E and B fluctuate strongly on
short length scales compared to the Debye length (i.e., �D D p

"0kT=nq2, which
is the distance over which charged carriers are screened). We take E and B to be the
average of the actual electric and magnetic fields over many Debye lengths, and the
effects of the short-range electromagnetic fluctuations or collisions will be included
through a collision operator

Ca.fa/ D ıfa

ıt

ˇ
ˇ
ˇ
ˇ
col l

;

and (4.1) is now modified to read

@fa

@t
C v � rfa C qa

ma

.E C v � B/ � rvfa D Ca.fa/; (4.2)

where E and B are the averaged fields. For plasmas, rather than using the Boltzmann
collision operator as we did before, we instead use a Fokker-Planck operator Ca,
and the corresponding kinetic equation is called the Fokker-Planck equation. In the
absence of collisions, it becomes the Vlasov equation.

The collision operator

Ca D
X

b

Cab.fa; fb/

is a sum of the contributions from collisions with each particle species b, including
self-collisions a D b. Like the Boltzmann collision operator, the number density,
momentum, and energy moments of the Fokker-Planck collisional operator must
satisfy

Z
Cab.fa/d

3v D 0I
Z
mavCab.fa/d3v D �

Z
mbvCba.fb/d3vI

Z
1

2
mav2Cab.fa/d

3v D �
Z
1

2
mbv

2Cba.fb/d
3v;
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since the force a species a exerts on a species b must be equal and opposite to
that which b exerts on a, so that no net momentum or energy change results from
collisions. For b D a, we have

Z
Caa.fa/d

3v D 0I
Z
mavCaa.fa/d3v D 0I

Z
1

2
mav2Caa.fa/d

3v D 0:

Any model collision operator has to satisfy these properties.
Finally, another important property of the collision operator is that it induces

the distribution function to relax to a local thermodynamical equilibrium, i.e., to a
velocity shifted Maxwellian distribution for each species,

f 0
a D na.x; t /

�
ma

2�kTa.x; t /

�3=2
exp

"
�ma Œv � ua.x; t /�

2

2kTa.x; t /

#

;

where ua is the mean velocity of species a, and the temperature is Ta.x; t /. The
collision operator vanishes if and only if all species have the same mean velocity
and temperature. For a single species plasma, Caa.f 0

a / D 0 for an arbitrary mean
velocity ua, indicating that the collision operator is Galilean invariant.

As with a simple non-magnetized gas, we can introduce moments for each
particle species,

hM i 
 1

na

Z
Mfad

3v;

where M is any polynomial function of the components of v. For example, the
zeroth-order moment, M D 1, yields the plasma species number density through

na.x; t / D
Z
fa.x; v; t /d 3v:

The higher-order moment hvi yields the average velocity of all particles of species
a at some point in phase space, i.e., ua.x; t / D hvi. As before, let ca D v � ua.
The mean value of ca is zero, but higher-order moments are generally non-zero and
are related to the thermal momentum and energy flux, and hence to the pressure and
heat flux. Define the temperature Ta so that 3kTa=2 is the average kinetic energy
associated with the random velocities,

3

2
kTa D

�
1

2
mac

2
a

�

:
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This of course is quite independent of whether the plasma is in local thermodynam-
ical equilibrium or not. Observe that

1

2
manahv2i D 1

2
manau2a C 3

2
nakTa;

showing that the total energy is the sum of the kinetic energy associated with the
mean flow and the thermal energy.

Following the procedure described in Chap. 2, we can derive fluid equations by
taking moments of the kinetic equation, obtaining the conservation laws

@n

@t
C r � .nu/ D 0I (4.3)

@

@t
.mnu/C r � P D ne .E C u � B/C

Z
mvC.f /d3vI (4.4)

@

@t

�
3

2
nkT C 1

2
mnu2

�

C r � Q D enE � u C
Z
1

2
mv2C.f /d3v; (4.5)

where P is the momentum flux tensor,

Pij 
 hmnvivj i;

and

Q 
 1

2
mnhv2vi;

is the energy flux vector. For convenience, we neglect the subscript a until we need
to distinguish between particle species again and we have used the notation .r �
P/i D @Pij =@xj . The conservation laws are the same as those of gas dynamics
except for the inclusion of the electric and magnetic fields.

We may separate the tensor P into two tensors related to the thermal properties
of the plasma and another related to the kinetic energy,

Pij D pıij C �ij Cmnuiuj ;

where we introduce the scalar pressure p (for an isotropic plasma) through

p D 1

3
nmhc2i D nkT;

and a traceless tensor, the viscosity tensor,

�ij 
 mnhci cj i � pıij :
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Finally, the heat flux vector q that describes the flux of thermal energy relative to
the flow velocity is defined by

q 
 nh1
2
mc2ci:

The momentum and energy flux in the conservation equations (4.4) and (4.5) can
therefore be expressed as

Pij D pıij C �ij Cmnuiuj I (4.6)

Qi D qi C 5

2
uip C �ij uj C 1

2
mnu2ui : (4.7)

The energy flux Q therefore comprises a heat flux q, a convective flux 5=2up, the
viscous transport of energy, and the convection of kinetic energy. Note that a heat
flux tensor

Qijk 
 mhci cj cki

is sometimes introduced, which is then related to the heat flux vector via

qi .x; t / D 1

2
Qijj .x; t /:

The right-hand sides of the fluid equations contain the rate of change of
momentum and energy due to the electromagnetic fields and the collisional transfer
of momentum and energy via collisions to and from other species, and may be
expressed as

Z
mvC.f /d3v D RI

Z
1

2
mv2C.f /d3v D QC R � u;

where

Q 

Z
1

2
mc2C.f /d3v:

ThisQ should not be confused with the heat flux vector or tensor, but unfortunately
the notation is standard and so we use it here. R is the rate of transfer of momentum
to the particle species of interest due to collisions with other species in the plasma,
and Q describes the corresponding rate of thermal energy transfer. The work R � u
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performed by the force R plus Q gives the total energy transfer rate. Evidently, for
a plasma comprised of protons (p) and electrons (e) only, the collisional relations

Rp D �ReI
Qp D �Qe � .ue � up/ � Re;

follow from the collisional conservation relations.
In general, the effects of collisions with different charged particle species are

additive (recall the collision operator is a sum of contributions from collisions with
each particle species b including self-collisions) so

Ra D
X

b

Rab

Qa D
X

b

Qab

where each Rab or Qab represents the interaction between particle species a and b.
It is straightforward to rewrite the conservation laws (4.3)–(4.5) as equations for

the density, flow velocity, and temperature (Exercise)

@na

@t
C r � .naua/ D 0I (4.8)

mana

�
@ua
@t

C ua � rua

�

D �rp � r � �a C qana .E C ua � B/C RI (4.9)

3

2
na

�
@.kTa/

@t
C ua � r.kTa/

�

C pr � ua D �r � qa � �a W rua CQa; (4.10)

where

�a W rua D �jk
@uk
@xj

:

Note too that the convective derivative describes the rate of change experienced by
the fluid element itself, and is sometimes denoted

d

dt
D @

@t
C u � r:

The momentum equation is similar to the Navier-Stokes equation with the addition
of the Lorentz force and the frictional term Ra. A form of the energy equation that
is often useful follows from rewriting the conservation of mass relation (4.8) as

d

dt
lnna D �r � ua:
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On using this expression in the energy equation (4.10) with pa D nakTa, we find

3

2
nk
dTa

dt
� pa d

dt
lnna D 3

2

dpa

dt
� 5

2
pa
d

dt
lnna

D 3

2
pa
d

dt
ln

�
pa

n
5=3
a

�

;

from which it follows that

p
dSa

dt
D �r � qa � �a W rua CQa:

Here we have introduced the entropy per particle Sa 
 3
2

ln
�
pa=n

5=3
a

�
. Thus, naSa

is the entropy density per unit volume of species a and the right-hand-side describes
the production of entropy.

Exercises

1. By taking moments of the Fokker-Planck equation, derive the fluid equa-
tions (4.3)–(4.5).

2. Derive the momentum equation (4.9) and energy equation (4.10) from the
conservation laws (4.3)–(4.5).

4.2 Markov Processes, the Chapman-Kolmogorov Equation,
and the Fokker-Planck Equation

The analysis of the previous section provides little insight into the underlying
description of the collisional term, beyond identifying that it satisfies certain
conservation laws. Here we derive a basic formalism that provides a structure
for describing the slow change in time of a particle probability distribution
function in response to an enormous number of small rapid changes. These rapidly
occurring small changes may be due to small angle particle-particle collisions,
or the pitch-angle scattering of charged particles by turbulent magnetic field
fluctuations. Typically, the small rapid changes (particle scattering) can be regarded
as independent in some sense. As will be shown here, the Fokker-Planck equation
is a very general equation that can be used to describe any phenomena that in some
approximate sense can be described as a Markov process. A Markov process is one
whose value at the next measurement depends only on its present measurement and
not on any previous measurements from earlier times. Thus, if X.t/ is a random
process, and Xn 
 X.tn/ with tn > tn�1 > � � � > t1 > t0, then a Markov process has
a probability density function such that

f .Xnjxn�1xn�2 : : : x1x0/ D f .Xnjxn�1/:

Markov processes can be both discrete and continuous.
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X(t)

tn-1 tn+1 
ttn

Fig. 4.1 A smooth function
representing a physical
process

Example. A simple and obvious example of a discrete Markov process is the
flipping of a coin where for each toss, the random variable X.tn/ D xn D C1
for a head and �1 for a tail. Clearly, X is a Markov process since f .xn/ D
1
2
ı.xn � 1/C 1

2
ı.xn C 1/ is independent of xn�1 and all preceding values of xn.

Example. Suppose

X.tn/ 
 Xn D
nX

iD1
xi ;

where xi are as in the previous example i.e., xn D C1 for a head and �1 for a tail.
Evidently, X is a Markov process as the value of Xn depends on the value of Xn�1
only and on no previous values.

An example of a continuous Markov process is not really possible to provide since
a continuous Markov process cannot exist in nature. Suppose, for example, that a
random function can be expressed as a smooth curve (Fig. 4.1). From elementary
calculus, the value of xnC1 depends not only on xn but also on xn�1 since we need
to know the slope of the function xn,

dx.t/

dt

ˇ
ˇ
ˇ
ˇ
tDtn


 xn � xn�1
�t

;

for �t small. Consequently, neither this function, nor any other that can be
expressed as a smooth curve, can be a Markov process. Nonetheless, a Markov
process can be a good approximation to a physical process. A particle experiencing
collisions fluctuates rapidly in position and slows down due to a net frictional force.
On a time scale much longer than the collisional time scale, the particle performs
a random walk in velocity space and soon “forgets” the details of its orbit near
t D 0, but it does typically remember its initial velocity v.t D 0/. The process
has essentially three time scales: the collisional time 
c ; the time �t after which we
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t

v(t)

tc Collisional time

Dt “Markovian” time scale

n -1 dissipation time scale

Fig. 4.2 A realization of the velocity of a particle experiencing scattering. The three time scales
distinguishing the different physical regimes are identified

may assume that to a good approximation, the process is Markovian, and finally the
dissipation time ��1 at which the mean particle velocity is approximately zero. We
require �t � 
c , and will generally assume that �t � ��1. See Fig. 4.2.

Using �t as described, we would expect to derive the particle distribution
function f .v; t C �t/ governing the probability of occurrence of v at time t C �t

from the distribution function f .v; t / at time t if we know the transition probability
	.v; �v/ that v changes by �v in time �t . This suggests that the relation

f .v; t C�t/ D
Z
f .v ��v; t /	.v ��v; �v/d.�v/; (4.11)

holds. This is essentially the Chapman-Kolmogorov equation and is used as the
starting point for deriving the Fokker-Planck equation, which may be thought of as
a generalization of Liouville’s theorem to include random motions. We follow the
derivation given by Chandrasekhar (1943)1 in deriving the Fokker-Planck equation.

We note that sometimes specific forms of the transition probability can be
identified, such as for Brownian motion. Holding 	.v; �v/ general, we may Taylor
expand f .v; t C�t/, f .v ��v; t /, and 	.v ��v; �v/, to obtain

f .v; t C�t/ D f .v; t /C @f

@t
�t CO.�t2/

D
Z 1

�1

Z 1

�1

Z 1

�1

"

f .v; t / �
X

i

@f

@vi
�vi C 1

2

X

i

@2f

@v2i
.�vi /

2

1The classic paper on this topic is that by Chandrasekhar (1943).
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C
X

i<j

@2f

@vi @vj
�vi�vj C � � �

3

5

2

4	.v; �v/ �
X

i

@	

@vi
�vi C 1

2

X

i

@2f

@v2i
.�vi /

2

C
X

i<j

@2	

@vi @vj
�vi�vj C � � �

3

5 d.�v1/d.�v2/d.�v3/:

Let us introduce moments of the velocity increments as

h�vi i D
Z 1

�1
�vi	.v; �v/d.�v/I

˝
�v2i

˛ D
Z 1

�1
.�vi /

2	.v; �v/d.�v/I

˝
�vi�vj

˛ D
Z 1

�1
�vi�vj 	.v; �v/d.�v/;

which allows us to rewrite the Taylor expanded integral equation as

@f

@t
�t CO.�t2/ D �

X

i

@f

@vi
h�vi i C 1

2

X

i

@2f

@v2i

˝
�v2i

˛

C
X

i<j

@2f

@vi @vj

˝
�vi�vj

˛ �
X

i

f
@

@vi
h�vi i C

X

i

@

@vi

˝
�v2i

˛ @f

@vi

C
X

i¤j

@

@vj

˝
�vi�vj

˛ @f

@vi
C 1

2

X

i

@2

@v2i

˝
�v2i

˛
f C

X

i<j

f
@2

@vi @vj

˝
�vi�vj

˛

CO
�˝
�vi�vj�vk

˛�
:

This equation is written more conveniently as

@f

@t
C O.�t2/

�t
D
X

i

@f

@vi

�

f
h�vi i
�t

�

C 1

2

X

i

@2f

@v2i

 

f

˝
�v2i

˛

�t

!

C
X

i<j

@2f

@vi @vj

 

f

˝
�vi�vj

˛

�t

!

C O
�˝
�vi�vj�vk

˛�

�t
;

(4.12)

which is the most general form of the Fokker-Planck equation.
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4.2.1 A More Formal Derivation of the Chapman-Kolmogorov
Equation and the Fokker-Planck Equation

More formally, consider the probability of a sequence of values of the random
function X.t/ such that
f .xn; xn�1; : : : ; x1; x0/ 
 Probability that at time t0, the process X.t/ has value
x0 and at time t1 has value x1, and : : : and at time tn, x.t/ has value xn where
tn > tn�1 > � � � > t1 > t0.

Hence, by applying repeatedly the definition of a conditional probability for a
Markov process,

f .xn; xn�1; : : : ; x1; x0/ D f .xnjxn�1; : : : ; x1; x0/f .xn�1; : : : ; x1; x0/

D f .xnjxn�1/f .xn�1; : : : ; x1; x0/

D f .xnjxn�1/f .xn�1jxn�2/f .xn�2; xn�3; : : : ; x1; x0/

D � � �
D f .xnjxn�1/f .xn�1jxn�2/f .xn�2jxn�3/ : : : f .x2jx1/f .x1jx0/f .x0/:

We have also seen that

f .xn; xn�1; : : : ; x1; x0/ D f .xn; xn�1; : : : ; x1jx0/f .x0/;

so that

f .xn; xn�1; : : : ; x1jx0/
D f .xnjxn�1/f .xn�1jxn�2/f .xn�2jxn�3/ : : : f .x2jx1/f .x1jx0/:

Hence, choosing n D 2 yields

f .x2; x1jx0/ D f .x2jx1/f .x1jx0/:
Upon integrating over all possible values of x1, we obtain

f .x2jx0/ D
Z
f .x2; x1jx0/dx1 or

f .x2jx0/ D
Z
f .x2jx1/f .x1jx0/dx1; (4.13)

which is called either the Chapman-Kolmogorov equation or the Smoluchowsky
equation.

In the formal definition of the Chapman-Kolmogorov equation, identify x1 with
the time t and let x2 D x.t C�t/. Furthermore, suppose that

f .x0/ 
 f .x; t D t0/ D ı.x � x0/:
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This allows us to neglect x0 in (4.13) and express

f .x2jx0/ D f .x; t C�t/;

where x2 is now denoted simply by x and

f .x1jx0/ D f .x1; t/:

The introduction of the definition

�x 
 x � x1;

allows us to use the following notation for f .x2jx1/,

f .x2jx1/ D f .x; t C�t jx ��x; t/
D 	.�x; t C�t jx ��x; t/:

The transition probability 	 gives the probability that at time t C �t the random
process has made a jump of �x from its previous value of x � �x at time t . The
Chapman-Kolmogorov equation then becomes

f .x; t C�t/ D
Z
	.�x; t C�t jx ��x; t/f .x ��x; t/d.�x/: (4.14)

The value of x appears only in combination with incremental changes �x through
x � �x. In plasma (and a gas in general), most Coulomb collisions cause only a
small change in the velocity of a particle. So we may assume in general that all of
the important physical changes will happen on the small�x scale, and we therefore
introduce a Taylor expansion on the right-hand-side of (4.14), obtaining

f .x; t C�t/ D
Z 1X

kD0

.��x/k
kŠ

�
�
@k

@xk
Œ	.�x; t C�t jx ��x; t/f .x ��x; t/�x��xDx d.�x/

�

;

or

f .x; t C�t/ D
Z 1X

kD0

.��x/k
kŠ

@k

@xk

�	.�x; t C�t jx; t/f .x; t/d.�x/



4.2 Markov Processes, the Chapman-Kolmogorov Equation... 133

D
1X

kD0

.�1/k
kŠ

@k

@xk
f .x; t/

Z
.�x/k	.�x; t C�t jx; t/d.�x/

D
1X

kD0

.�1/k
kŠ

@k

@xk

	
f .x; t/h.�x/ki.x; t/
 ;

after assuming that the infinite sum is convergent and interchanging the summation
and integration. The last expression was evaluated by introducing the kth moment
or kth expectation

h.�x/ki D
Z
.�x/k	.�x; t C�t jx; t/d.�x/;

and is a function of .x; t/. On rewriting the expanded Chapman-Kolmogorov
equation as

f .x; t C�t/ � f .x; t/
�t

D
1X

kD1

.�1/k
kŠ�t

@k

@xk

	
f .x; t/h.�x/ki.x; t/
 ;

and letting �t ! 0, implies the left-hand-side becomes

lim
�t!0

f .x; t C�t/ � f .x; t/
�t

D @f

@t
:

There is some subtlety in the limit which is not immediately apparent. The time
�t really refers to the Markovian time scale (Fig. 4.2) which is certainly smaller
than the macroscopic dissipation time scale. However, to ensure that the system is
Markovian requires the collisional time scale 
c � �t , and so in this sense �t
cannot tend to zero! We conveniently overlook this technical point and express the
limiting form of the Chapman-Kolmogorov equation as

@f

@t
D

1X

kD1
.�1/k @

k

@xk

"

lim
�t!0

˝
.�x/k

˛

kŠ�t
f .x; t/

#

:

By defining diffusion coefficients

D.k/.x; t/ 
 lim
�t!0

˝
.�x/k

˛

kŠ�t
;

we derive the infinite order “diffusion” equation

@f

@t
D

1X

kD1
.�1/k @

k

@xk

	
D.k/.x; t/f .x; t/



:
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If we truncate the expansion after k D 2, we have the general form of the Fokker-
Planck equation,

@f

@t
D � @

@x

	
D.1/.x; t/f .x; t/


C @2

@x2

	
D.2/.x; t/f .x; t/



; (4.15)

in the variable x on which incremental changes occur.
For particle motion in which the velocity experiences incremental changes

through collisions (Coulomb collisions for a collisional plasma, pitch-angle scat-
tering of fast particles in low frequency turbulence for a collisionless plasma, or
Brownian motion in a fluid or gas), the variable x is replaced by the velocity v and
�x by �v. Accordingly, the diffusion coefficients become

D.1/.v; t / D lim
�t!0

h�vi
�t

I

D.2/.v; t / D lim
�t!0

h.�v/2i
2�t

;

and the 1D Fokker-Planck equation in velocity space becomes

@f

@t
D � @

@v

� h�vi
�t

.v; t /f .v; t /

�

C @2

@v2

 ˝
.�v/2

˛

2�t
.v; t /f .v; t /

!


 C.f /: (4.16)

The right-hand-side can be regarded as the collision operator. The first term on the
right-hand-side describes the average change in v, and has the character of a drag
force slowing the particle. The second term describes diffusion in velocity space due
to particle scattering. In equilibrium, the collisional drag and diffusion will balance
and result will be a Maxwellian distribution function describing the plasma. The
extension of the Fokker-Planck equation to three dimensions is straightforward and
is given by

C.f / D �rv � J;

where rv is the divergence in velocity space and J is the flux in velocity space

Jk 
 h�vki
�t

f .v; x; t / � @

@vj

 ˝
�vk�vj

˛

2�t
f .v; x; t /

!

:

The velocity diffusion coefficient is a tensor indicating that diffusion is not
necessarily isotropic, and indeed may not even be governed by the same physical
processes in different directions (see later the discussion about the parallel and
perpendicular diffusion coefficients for energetic particles in a collisionless plasma).

The neglect of terms higher than second order is justified in that these terms are
smaller by a factor of .ln�/�1, where� is proportional to the Debye length divided
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by the Coulomb impact parameter. Higher order terms describe the effects of close
collisions that yield large deflections in the velocity vector. Most astrophysical and
almost all laboratory plasmas satisfy ln� � 1 but this is not necessarily true in a
solar context.

Finally, note again that a plasma is comprised of multiple species typically, and
each distribution experiences collisions with the others. Since collisions are additive,
we have the velocity space flux of particles of species a expressed as the sum

Ja D
X

b

Jab;

due to contributions from collisions with each species b, including a.

Exercises

1. Consider a coin tossing event. Suppose

X.tn/ 
 Xn D
nX

iD1
xi ;

where xi are given by xn D C1 for a head and �1 for a tail. Calculate the pdf
for the experiment.

4.3 Collision Dynamics, the Rosenbluth Potentials,
and the Landau Collision Operator

To determine explicit forms of the diffusion coefficients,2 we consider first the
dynamics of single particle collisions and then evaluate the statistics of cumulative
collisions, i.e., we compute the velocity-space flux of particle species a experiencing
collisions with particles of species b. Consider the masses of two colliding particles
a and b to be arbitrary. To evaluate the changes in velocity, we need to compute the
particle deflection ˛ – see Fig. 4.3. Introduce the Lagrangian

L D ma Px2a
2

C mb Px2b
2

� qaqb

4�"0jxa � xbj ;

and express it in the coordinates of the center of mass and the relative position

R 
 maxa Cmbxb
ma Cmb

; r D xa � xb;

2The following sections deriving the collisional transport coefficients are based on the extensive
monograph by Helander and Sigmar (2002).
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qb

qa

v 

y

x
z

r 
b

a
q

Fig. 4.3 Collision dynamics and angles in the rest frame of particle b. See text for details

so that

L D .ma Cmb/ PR2

2
C 1

2

mamb Pr2
ma Cmb

� qaqb

4�"0r
:

L is independent of R, so from the Euler equations,

d

dt

�
@L

@ PR
�

D @L

@R
and

@L

@R
D 0:

Consequently, .maCmb/ RR D 0 implies that the center of mass moves at constant
speed, PR D const. The first term in the center of mass form of the Lagrangian is
therefore an additive constant, and the two remaining terms describe the motion
around the center of gravity. Thus, this is simply the Lagrangian of a particle of
reduced mass m� D mamb=.ma C mb/ moving in a fixed Coulomb field. Hence,
the deflection angle of the relative velocity vector Vrel D Pr is equal to3

3Recall that if we have a particle of charge qa and velocity v traveling past a particle of charge qb ,
we can compute the deflection quite easily if the impact parameter b is assumed to be so large that
the deviation is through only a small angle ˛, as in Fig. 4.3. The Coulomb force qaqb=4�"0r2.t/,
where r.t/ ' .b2 C v2t2/1=2 is the separation between the particles at time t , implies that the
momentum change in the y-direction to the moving charged particle is given by

ma�vy D
Z

1

�1

qaqb

4�"0r2.t/

b

r.t/
dt D qaqb

4�"0

Z
1

�1

b

.b2 C v2t2/3=2
dt D qaqb

2�"0bv
:

The angle ˛ is then given by

˛ D �vy
v

D qaqb

2�"0bmav2
D bmin

b
;

where bmin � qaqb=2�"0mav2. The deflection angle ˛ 	 1 if the impact parameter b 
 bmin
i.e., large.



4.3 Collision Dynamics, the Rosenbluth Potentials... 137

˛ D qaqb

2�"0rm�V 2
rel

;

in the collision. Introduce the orthogonal coordinate system .x; y; z/ – Fig. 4.3 –
with x in the direction of va. The relative velocity Vrel then varies according to

�Vrel;x D Vrel .cos˛ � 1/I
�Vrel;y D Vrel sin˛ cos 
 I
�Vrel;z D Vrel sin˛ sin 
;

as a result of the collision. Here 
 denotes the angle of the perpendicular component
of the deflection vector to the x � y-plane (Fig. 4.3). On using

xa D R C mb

ma Cmb

r;

we can compute the change �va in the velocity vector of particle a as

�va D mb

ma Cmb

�Vrel :

In a collision with impact parameter b, va changes as

�vx D mb.cos˛ � 1/
ma Cmb

Vrel ' �
�

1C ma

mb

��
qaqb

2�"0ma

�2
1

2r2V 3
rel

;

in the x-direction, and

�vy D mb sin˛ cos 


ma Cmb

Vrel D qaqb

2�"0ma

cos 


Vrel r
I

�vz D mb sin˛ sin 


ma Cmb

Vrel D qaqb

2�"0ma

sin 


Vrel r
;

in the y- and z-directions, after approximating cos˛ � 1 � �˛2=2 and sin˛ � ˛

for assumed small angle deflections.
On the basis of the velocity deviation for a single collision, we now consider

the cumulative effect of many collisions. To determine the number of collisions that
can occur between a given particle a and particles of species b in time �t with
impact parameters in the interval Œr; r C dr� and angles in the interval Œ
; 
 C d
�,
consider Fig. 4.4. The area spanned by dr and d
 is the cross-section d� D rdrd
 ,
and Vreldt is the distance particle a travels relative to b in time dt . The volume
corresponding to the cross section d� along the relative velocity vector Vrel is given
by dV D Vreldtd� . On multiplying the volume by the distribution function fb and
integrating over all possible velocities that species b can have then yields the number
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Fig. 4.4 Geometry to compute the collision frequency of a particle traveling through a gas of
particles. See text for details

of particles in the volume. Consequently, the frequency of collisions of particle a
with species b is given by

�td
 rdr

Z
fb.v0/Vreld 3v0;

where Vrel D v � v0 is the relative velocity of colliding particles.
The velocity change �v resulting from a single collision of a particle with

another can be used to estimate the average change in the velocity vector of particle
a due to collisions with particles b. Thus, multiplying �vx , �vy and �vz by the
number of collisions and integrating over r and 
 yields the average change in
velocity as

h�vxiab
�t

D �
�

1C ma

mb

��
qaqb

2�"0ma

�2 Z �D

rmin

Z 2�

0

Z
1

2r2V 3
rel

d
 rdrfb.v0/Vreld 3v0

D � 1

4�

�

1C ma

mb

��
qaqb

"0ma

�2 Z �D

rmin

dr

r

Z
1

V 2
rel

fb.v0/d3v0

D �L
ab

4�

�

1C ma

mb

�Z
1

V 2
rel

fb.v0/d3v0;
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where the logarithmic integral has been “cut-off” at some minimum to avoid a
divergent integral. Of course, particles somewhat further than the Debye radius or
length

�D 

s
"0kT

nq2
;

from the other particle do not experience an effective collision (i.e., the scattering
particles remain on straight-line trajectories) so the integration regime is Œrmin; ��.
Hence,

Lab D
�
qaqb

"0ma

�2 Z �D

rmin

dr

r
D
�
qaqb

"0ma

�2
ln�;

where ln� 
 ln .�D=rmin/ is known as the Coulomb logarithm. Similarly, because
of the cos 
 and sin 
 factors, we have

h�vyiab
�t

D h�vziab
�t

D 0:

Since (Exercise),

h.�vy/2iab
2�t

D h.�vz/
2iab

2�t
D Lab

8�

Z
1

Vrel
fb.v0/d3v0;

and

h.�vx/2iab
2�t

D �

8

�

1C ma

mb

�2 �
qaqb

2�"0ma

�4 �
1

r2min
� 1

�2D

� Z
fb.v0/
V 5
rel

d 3v0;

we have crudely

˝
.�vy/

2
˛ � r2min ln�

˝
.�vx/

2
˛
:

This result suggests that we may neglect
˝
.�vx/2

˛
=2�t under most circumstances.

For the same reason, the higher-order terms in the Fokker-Planck expansion are
similarly ordered and are thus typically neglected.

These expectations can be inserted into the Fokker-Planck collision operator.
However, we have expressed h�vi i and h�vi�vj i in a coordinate system aligned
with the velocity vector of one of the colliding particles, so we need to introduce an
arbitrary orthogonal coordinate system with unit vectors ek . We therefore have

h�vi iab
�t

D hei � Ox�vxiab
�t

D �L
ab

4�

�

1C ma

mb

�Z
Vrel;i

V 3
rel

fb.v0/d3v0;
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and, noting that
˝
�vx�vy

˛
=�t D 0 and

˝
.�vy/2

˛
=�t D ˝

.�vz/
2
˛
=�t ,

h�vi�vj iab
2�t

D
˝
ei � .Oy�vy C Oz�vz/ej � .Oy�vy C Oz�vz/

˛ab

2�t

D
˝
.ei � Oy/.ej � Oy/.�vy/2 C .ei � Oz/.ej � Oz/.�vz/

2
˛ab

2�t

D
˝
Œei � ej � .ei � Ox/.ej � Ox/�.�vy/2

˛ab

2�t

D
˝
.ıij � Vrel;iVrel;j =V 2

rel /.�vy/2
˛ab

2�t
D Lab

8�

Z
Vij fb.v0/d3v0;

where the tensor related to the relative velocities of the particles has been defined as

Vij D V 2
rel ıij � Vrel;iVrel;j

V 3
rel

:

To complete the derivation of the Fokker-Planck collision operator, introduce the
“Rosenbluth potentials4”

�b.v/ 
 � 1

4�

Z
1

Vrel
fb.v0/d3v0I

 b.v/ 
 � 1

8�

Z
Vrelfb.v0/d3v0:

Since

@Vrel

@vi
D @

@vi

sX

k

.vk � v0
k/
2 D Vrel;i

Vrel
;

and

@2Vrel

@vi @vj
D Vij ;

the expectation values can be expressed in terms of the potentials

Aabi 
 �h�vi iab
�t

D
�

1C ma

mb

�

Lab
@�b

@vi
I (4.17)

4Rosenbluth et al. (1965).
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Dab
ij 
 h�vi�vj iab

2�t
D �Lab @

2 b

@vi @vj
: (4.18)

Hence, the average force experienced by particle species a colliding with particle
species b is simply �maA

ab
i and Dab

ij is a diffusion tensor in velocity space. The
Fokker-Planck collision operator can therefore be expressed as

Cab.fa; fb/ D @

@vi

�

Aabi fa C @

@vj

�
Dab
ij fa

��

: (4.19)

Since the Laplacian in velocity space is

r2
v D

X

i

@2

@v2i
;

then r2
vVrel D Vii D 2=Vrel , so that

r2
v b D �b:

Hence, Aabi and Dab
ij are related by the “Einstein relation”

Aabi D �
�

1C ma

mb

�
@Dab

ij

@vj
:

The collision operator (4.19) can then be written in terms of the Rosenbluth
potentials as

Cab.fa; fb/ D ln�

�
qaqb

ma"0

�2
@

@vi

�
ma

mb

@�b

@vi
fa � @2 b

@vi @vj

@fa

@vj

�

: (4.20)

If we express this equation directly in the integral form of the Rosenbluth potentials,
we obtain the Landau form of the collision operator,5

Cab.fa; fb/ D ln�

8�ma

�
qaqb

"0

�2
@

@vi

Z
Vij

"
fa.v/
mb

@fb.v0/
@v0
j

� fb.v0/
ma

@fa.v/
@vj

#

d3v0;

(4.21)

after using @Vij =@vj D 2Vrel;i =Vrel .

5Landau (1936).



142 4 Charged Particle Transport in a Collisional Magnetized Plasma

Exercises

1. Show that

h.�vy/2iab
2�t

D h.�vz/
2iab

2�t
D Lab

8�

Z
1

Vrel
fb.v0/d3v0;

and

h.�vx/2iab
2�t

D �

8

�

1C ma

mb

�2 �
qaqb

2�"0ma

�4 �
1

r2min
� 1

�2D

� Z
fb.v0/
V 5
rel

d 3v0:

2. By direct substitution, show that the Landau collision operator (and hence the
other forms) satisfy the conservation laws

Z
Cab.fa/d

3v D 0I
Z
mavCab.fa; fb/d3v D �

Z
mbvCba.fb; fa/d3vI

Z
1

2
mav2Cab.fa; fb/d

3v D �
Z
1

2
mbv

2Cba.fb; fa/d
3v:

4.4 Electron-Proton Collisions

The Coulomb collision operator can be simplified if the colliding particles move
at very different speeds, such as electrons colliding with protons moving at some
average speed up . The velocity spread around up in the proton distribution function
is the order of the proton thermal speed,

vTp D
q
2kTp=mp �

p
2kTe=me D vTe

unless Te � Tp . To the electrons, the proton distribution is therefore a very
narrowly peaked distribution function, which we may approximate as a delta
function

fp.v/ ' npı.v � up/;

with up � vTe . The Rosenbluth potentials then become

�p ' � np
4�

1

jv � upj � � np

4�v

�
1C v � up

v2

�
I

 p ' � np
8�

jv � upj � � np
8�

v
�
1 � v � up

v2

�
:
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In the Rosenbluth potential form of the collision operator, the �p term is multiplied
by me=mp � 1, implying that only the  p term is important to electron-proton
collisions. Furthermore, in the expression approximating  p , note that the second
term is small since up � v. Hence,

Cep.fe/ ' �Lep @

@vi

�
@2 p

@vi @vj

@fe

@vj

�

D np

8�
Lep

@

@vi

�
@2v

@vi @vj

@fe

@vj
� @2

@vi @vj

�vkupk
v

� @fMe
@vj

�

D C0
ep C C1

ep; (4.22)

where the second term in the expansion was approximated using a Maxwellian
electron distribution function fMe since it is relatively small (and thus suitable to
approximate the distribution function by the lowest-order distribution). Note that
the tensor

@2v

@vi @vj
D @

@vi

�
@v

@vj

�

D @

@vi

�vj
v

�
D v2ıij � vivj

v3

 Wij

can be expressed as

0

@
v2 � v21 �vvv2 �v1v3
�v2v1 v2 � v22 �v2v3
�v3v1 �v3v2 v2 � v23

1

A

which is easily seen to be orthogonal to the vector v D .v1; v2; v3/, and hence to

@fMe

@v
D �mev

kTe
fMe:

This implies that both collision terms need to be retained in case the collisional
term operates on a Maxwellian distribution since the first term vanishes, and so both
terms may be of the same order. We can use this result to simplify the C0

ep term,
expressing it as

C0
ep D np

8�
Lep

@

@vi

�
@2v

@vi @vj

@fe

@vj

�

D np

8�
Lep

@

@v
�
�
1

v

@fe

@v
� v

v3

�

v � @fe
@v

��

:

We need only include the components of the square bracket that are perpendicular
to v. This implies that the second term in C0

ep will vanish identically, and only
the non-radial terms in the first term will contribute. Physically, this is because
collisions of electrons with ions do not change the magnitude of v but only the
direction. Consequently, electrons will scatter on a sphere of fixed velocity radius,
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so it is sensible to introduce spherical coordinates in velocity space .v; 
; �/. In view
of the comments above, on using spherical coordinates, we obtain

C0
ep D npL

ep

8�v3

�
1

sin 


@

@


�

sin 

@fe

@


�

C 1

sin2 


@2fe

@�2

�


 npL
ep

4�v3
L.fe/;

where we have introduced the Lorentz scattering operator L.fe/, i.e.,

L.fe/ 
 1

2

�
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@
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.1 � �2/@fe
@�
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;

where we have introduced the pitch-angle � D cos 
 , and the last line follows if we
assume that the electron distribution fe is gyrotropic (i.e., independent of �).

To evaluate C1
ep , we need to evaluate the derivatives. We use the Einstein

summation convention to obtain

@2

@vi @vj

�vk
v

� @fMe
@vj

D @

@vi

�
ıij

v
� vkvj

v3

�
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vivj
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ıik C vj vk

v3
ıij � 3vivkv2j
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me

kTe
fMe

D v2ıik � vivk
v3

me

kTe
fMe D Wkm
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kTe
fMe;

and

@Wik

@vi
D @

@vi

v2ıik � vivk
v3

D � vi
v3
ıik � vk

v3
� vi

v3
ıik C 3

v2i vk
v5

D 2vk
v3
:

Use of these two expressions allows us to find

C1
ep D �npL

ep

8�

meupkfMe
kTe

@Wik

@vi
D �npL

ep

4�

me

kTe

v � up
v3

fMe:

The total electron-proton scattering operator can therefore be expressed as the sum
of the Lorentz scattering operator and C1

ep ,

Cep.fe/ D �ep.v/

�

L.fe/ � mev � up
kTe

fMe

�

; (4.23)
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where

�ep.v/ 
 npL
ep

4�v3
D npe

4

4�m2
e"
2
0v
3

ln� D 3
p
�

4
ep

�vTe
v

�3
;

is a velocity-dependent electron-proton collision frequency, and 
ep is a measure of
the electron-proton collision time,


ep D 12.�kTe/
3=2m

1=2
e "20p

2npe4 ln�
:

The first part of the collision operator (4.23) describes the collision of electrons
with “infinitely heavy” stationary protons, implying that only the electron direction
and not the velocity changes in a collision. Consequently, there is only diffusion in
velocity space on a sphere of constant radius v D constant, and the collision operator
is spherically symmetric. Finally, note that the proton mass is completely absent
from the collision operator, depending as it does only on charge e. This makes it
straightforward to model electron collisions in a plasma comprising several different
ion species.

Exercises

1. How would the result (4.23) change (i) if the electrons scattered off a background
of ˛ particles (He nuclei), and (ii) a mixture of protons and ˛ particles, as found
in the solar wind emitted by the Sun?

4.5 Collisions with a Maxwellian Background

Assume a stationary Maxwellian background population of charged particles b,

fb.v/ D fb0.v/ D nb

�3=2v3T b
e�.v=vT b/2 ;

where vT b D p
2Tb=mb is the thermal speed. The background distribution is

isotopic in v, making the Rosenbluth potentials dependent only on v, thus

�b.v/ D �b.v/;  b.v/ D  b.v/:

Hence,
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@vi @vj
D @2v

@vi @vj
 0
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v2
 00
b D Wij b 0 C vivj

v2
 00
b ;
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where Wij D .v2ıij � vivj /=v3. Using these expressions, the Rosenbluth form of
the collision operator for an isotropic background particle distribution reduces to

Cab.fa; fb0/ D ln�

�
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@vi
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mb

@�b

@vi
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:

On using

@

@vi

�

Wij

@fa

@vj

�

D 2
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L.fa/;

and

rv � .A.v/v/ D 1

v2
@.v3A/
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;

we obtain

Cab.fa; fb0/ D �2L
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bL.fa/C Lab
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�
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mb
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v
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@v

��

;

where the velocity derivative is taken at fixed direction of v, and we have used
vj @fa=@vj D v@fa=@v. We will assume an orthogonal coordinate system in which
the x-coordinate is parallel to the velocity vector.

To identify the role of each of the terms in the collision operator in this coordinate
system, recall that Fokker-Planck collisions are described by the expectations

Aabi D � 1

�t

*�vk
0

0

+ab

I

Dab
ij D 1

2�t

*�v2k 0 0

0 �v2?=2 0

0 0 �v2?=2

+ab

:

The other two directions are orthogonal to x and denoted by the ? symbol. Hence,
�vk D �vx and �v2? D �v2y C �v2z . With the isotropic forms of the Rosenbluth
potentials, we can evaluate the elements of the tensors Aabi and Dab

ij . From (4.17),
we have

1

v
Aabx D �h�vk=viab
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D 1
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1C ma
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Lab
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v

 �abs .v/ (4.24)
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so that

Aabi D v

* �abs
0

0

+

:

The frequency �abs describes the rate at which a particle of species a is decelerated
by collisions with particles of species b. From (4.18), the elements of the collisional
diffusion tensor can be expressed through (using v D vOx)

˝
.�vk=v/2

˛ab

2�t
D �L

ab

v2
@2 b

@v2x
D �L

ab

v2
 00
b 
 1

2
�abk .v/I (4.25)
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D �L

ab

v3
 0
b.v/ 
 �abD .v/; (4.26)

from which it follows that the diffusion tensor can be expressed as

Dab
ij D v2

2

0

B
@

�abk 0 0

0 �abD 0

0 0 �abD

1

C
A

ab

:

The tensor Dab gives the velocity diffusion frequency �abk in the parallel direction

and �abD is the frequency with which particles are scattered from the parallel direc-
tion. Consequently, if, for example, �abk can be neglected, �abD describes how quickly
particles are scattered onto a spherical shell of constant radius in velocity space i.e.,
onto a shell of constant energy. Parallel scattering acts to broaden the shell.

On replacing �0
b=v and  00

b =v by the streaming and diffusion scattering frequen-
cies allows the collision operator to be expressed as

Cab.fa; fb0/ D �abD L.fa/C 1

v2
@

@v

�

v3
�

ma

ma Cmb

�abs fa C 1

2
�abk v

@fa

@v

��

: (4.27)

Recall that the Lorentz operator L simply describes particle diffusion on the surface
of a sphere v D constant, so this term gives the rate at which particles scatter on a
sphere – i.e., changing their direction while preserving v.

To complete the analysis, we need to evaluate the Rosenbluth potentials �b.v/
and  b.v/ for a Maxwellian distribution function, so that we can compute the
collision frequencies �abs , �abk , and �abD . A useful comparison can be drawn between
the Rosenbluth potentials and the electrostatic potential ˚ , defined as usual by

r2˚ D � �

"0
) ˚.r/ D

Z
�.r0/

4�"0jr � r0jd
3r 0;
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where � denotes the charge density. Since

�b.v/ D � 1

4�

Z
1

Vrel
fb.v0/d3v0;

(Vrel D v � v0) we have that

r2
v�b D 1

v2
@

@v

�

v2
@�b

@v

�

D fb.v/; (4.28)

after expressing the Laplacian in spherical velocity-space coordinates and assuming
isotropy. Thus, �b is the “potential” associated with the “charge distribution” fb in
velocity space. This is the origin of the term Rosenbluth potential. On assuming that
the distribution fb is a Maxwellian, we can integrate the Possion equation (4.20) to
obtain (after integrating by parts)

�0
b.v/ D mbnb

4�kTb
G .v=vT b/ ;

where G.x/ is the Chandrasekhar function, xb 
 v=vT b , xa 
 v=vTa;

G.x/ 
 f .x/ � xf 0.x/
2x2

; f .x/ D 2p
�

Z x

0

e�z2d z D erf.x/;

!
(

2x

3
p
�

as x ! 0
1
2x2

as x ! 1 ;

and erf.x/ is the familiar error function.
Similarly, the second Rosenbluth potential  b can be obtained by using the

relationship r2
v b D �b , or in spherical velocity-space coordinates

1

v2
d

dv

�

v2
d b

dv

�

D �b.v/:

It can then be established that

d b

dv
D � nb

8�
Œf .xb/ �G.xb/� ;

(Exercise). On using these results in (4.24)–(4.26), we obtain the collision frequen-
cies in terms of the error function and the Chandrasekhar function. Consider first
the streaming scattering frequency, obtaining

�abs D q2aq
2
b ln�

"20m
2
a

�

1C ma

mb

�
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4�kTb

1

vTa

G.v=vT b/
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D 2
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b ln�
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1C ma

mb
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G.xb/
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D 2 N�ab Ta
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1C mb

ma

�
G.xb/
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; (4.29)

while the corresponding diffusion scattering frequencies are given by

�abD .v/ D N�ab f .xb/ �G.xb/
x3a

I (4.30)

�abk .v/ D 2 N�ab G.xb/
x3a

I (4.31)

where N�ab 
 nbq
2
aq

2
b ln�

4�"20m
2
av3Ta

; xb D v

vT b
; xa D v

vTa
: (4.32)

The last equation defines the fundamental collision frequency N�ab of the system.
From the asymptotic form of the Chandrasekhar function (see the Exercises), we

see that G.x/ decreases with increasing velocity (x D v=vT ) if x is sufficiently
large. The average frictional force on a particle

ma

˝
�vk

˛ab

�t
D �mavk�abs / G.xb/;

therefore decreases with increasing velocity for xb sufficiently large. This vanishes
in the limit of infinite velocity, although relativistic effects eventually prevent this.
This is a consequence of momentum exchange decreasing as an incident particle’s
speed increases if the impact parameter is held constant. This curious effect has
an interesting implication. Consider an applied electric field in a plasma with a
population of fast electrons. As a result of the decreasing frictional force on the
electrons, the electrons can be accelerated to arbitrarily high energies, forming a
population of runaway electrons. If the electric field is sufficiently large, then even
thermal electrons can experience run away, and the bulk electron distribution will
depart from a Maxwellian distribution. This will occur when, approximately,

eE > 2 N�eemevTe;

or equivalently when the electric field exceeds the “Dreicer field”

ED D nee
3 ln�

4�"2Te
:
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Exercises

1. Show that the assumption of a Maxwellian distribution function fb.v/ yields the
solution to the partial differential equation

1

v2
@

@v

�

v2
@�b

@v

�

D fb.v/

as

�0
b.v/ D mbnb

4�Tb
G .v=vT b/ ;

where G.x/ is the Chandrasekhar function defined above.
2. By using the definitions of �abD .v/ and �abk .v/ and the relation r2

v b D �b
in spherical velocity-space coordinates, derive the collision frequencies (4.30)
and (4.31).

3. Plot the Chandrasekhar function G.x/ from Œ0; 5�.

4.6 Collision Operator for Fast Ions

Energetic ions are ubiquitous in plasmas and often of considerable interest, fre-
quently acting as a probe of high energy processes in astrophysics, space physics, or
laboratory plasmas. Examples include solar energetic particles (accelerated in either
solar flares or at interplanetary shock waves) or galactic cosmic rays. Cosmic rays
especially propagate vast distances through a variety of interstellar environments
experiencing numerous particle collisions that can modify their distribution. Note
that this is distinct from the collisionless pitch-angle scattering that cosmic rays
experience due to magnetic turbulence – this is discussed in the following chapter.
For the present, we will assume a background comprised of thermal protons
and electrons, and consider only moderately energetic particles that satisfy the
ordering

vTp � v˛ � vTe;

where the subscript ˛ identifies the energetic particle population.
The largest collision frequency in this case, assuming a background Maxwellian

population, is the energetic ion-electron frictional drag, given by (4.29),
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where the small argument approximation to the Chandrasekhar function was used.
The opposite limit, x ! 1, is appropriate for frictional drag of energetic ions with
thermal protons. The critical speed above which electron drag dominates proton
drag is given by �˛es � �

˛p
s , i.e.,
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:

Hence, we find a critical particle velocity vc such that
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or
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��1=3
vTe:

This corresponds to an energetic particle energy of approximately (on setting vT˛ '
vTe D p

2kTe=me)

1

2
m˛v2c � 50kTe:

A massive particle moving through a cloud of electrons experiences a drag force
but little deflection (think of a cyclist riding through air) as it propagates. This can
be verified by estimating the diffusion frequencies. On the other hand, collisions
between energetic ions and thermal protons can lead to large deflections because
their masses are comparable. In this case,

�
˛p
D D

�vb
v

�3 1


s
;
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and the critical speed for pitch angle scattering

vb 

�
mp

m˛

�1=3
vc;

is of the same order of magnitude as vc . Thus pitch-angle scattering of energetic
particles is comparable to proton drag since both are determined by energetic ion
and thermal proton collisions.

The collision operator for energetic ions is therefore given by the electron drag,
proton drag, and ion-proton scattering expressions above, thus substituting these
results into the collision operator (4.27) yields

C˛.f˛/ D 1

v2
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�vb
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after using
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�˛ps D
�vc

v

�3

�1
s :

If the energetic particles are isotropically distributed, the scattering operator will
vanish by symmetry.

Exercises

1. Suppose that energetic particles are introduced as an isotropic distribution with
speed U at a rate � per unit volume. Since the energetic particles are isotropically
distributed in velocity space, the kinetic equation may be expressed as

@f˛

@t
D 1

v2
s

@

@v

	�
v3 C v3c

�
f˛.v/


C �
ı.v � U/
4�U 2

:

Subject to the boundary condition f˛.v > U/ D 0, show that the steady-state
energetic particle distribution function is given by

f˛.v/ D �

s

4�.v3 C v3c/
for v < U:

4.7 Proton-Electron Collisions

Unless the proton temperature is sufficiently high that Te � Tp , electrons, being
much lighter, move far faster than protons. Protons (and ions in general) therefore
experience multiple collisions by light fast particles, and this problem is thus similar
to the mathematical description of Brownian motion. In view of the different particle
speeds, we introduce the electron distribution function as a sum of a Maxwellian
distribution with mean velocity equal to that of the proton mean velocity fMe and a
remainder fe1,
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fe.x; t; v/ D fMe.v � vp/C fe1.v/:

Similarly, we separate the collision operator into two parts,

Cpe.fp; fe/ D CpeŒfp; fMe.v � vp/�C Cpe.fp; fe1/:

Consider the latter contribution to the collision integral first. From the form of the
collision operator,

Cpe.fp; fe1/ D Lpe
@

@vi

�
mp

me

@�e

@vi
fp � @2 e

@vi @vj

@fp

@vj

�

' Lpe
@

@vi

�
mp

me

@�e

@vi
fp

�

;

since the first term is large. Recall that the first term is the streaming/frictional drag
term

Lpe
mp

me

@�e

@vi
' �h�vi ipe

�t
D �F

pe
i .v/

mp

;

where Fpe.v/ is the averaged force acting on a proton as it propagates through an
electron distribution fe1 at velocity v while experiencing collisions. The force acting
on the proton through electron collisions must be essentially independent of the
proton velocity since the electrons in this case are fast, vTe � vTp , meaning that fe1
varies on this time scale only. Hence, Fpe.v/ is approximately unchanged for all ion
velocities, and so

Fpe D Rpe

np
D �Rep

np
;

with the result that

Cpe.fp; fe1/ D � @

@vi

�
F
pe
i

mp

fp

�

D Rep

mpnp
� @fp
@v
:

Recall that R 
 R
mpvC.f /d3v and that Cep.fe/ was computed in Sect. 3.4.

Consider now the first term in the proton-electron collision operator. In this case,
the electron distribution is given by the Maxwellian fMe.v � vp/. Nonetheless,
protons move more slowly than the electrons, so we may use the Rosenbluth
potential solution for �0

e in terms of the Chandrasekhar function G.x/ in the limit
that x ! 0,

@�e

@vj
D vj � vpj

v
�0
e D vj � vpj

v

mene

4�kTe

2

3
p
�

v

vTe
D .vj � vpj /

ne

3

�
me

2�kTe

�3=2
:
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To compute  e , we use the relation

r2
v e D �e.v/ ' � 1

4�

Z
fMe.v0/

v0 d3v0

D � 1

4�

Z 2�

0

Z �

0

Z 1

0

v02e�v02=v02
Te

v0 dv0d
d�

D � ne

.2�/3=2

r
me

kTe
;

which yields

@2 e

@vi @vj
' � ne

3.2�/3=2

r
me

kTe
ıij :

We therefore obtain

Cpe.fp; fe/ D Rep

mpnp
� @fp
@v

C ln�

�
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mp"0
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.v�vp/
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me
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mpnp
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C mene

mpnp
ep

@

@v
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�

.v � vp/fp C kTe

mp

@fp

@v

�

;

where the electron-proton collision time


ep 
 12�3=2p
2

p
me.kTe/

3=2"20
npe4 ln�

;

has been introduced. The first term in the square brackets is the proton-electron
frictional drag term, and is inversely proportional to 
ep . The second term in the
square brackets describes energy exchange between protons and electrons, mediated
by collisions. This term is has a time scale

mp
ep

me

� 
pe

that is significantly slower than that associated with frictional drag.
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4.8 Transport Equations for a Collisional
Electron-Proton Plasma

As with the ideal gas problem, the Chapman-Enskog expansion is one approach to
deriving plasma fluid transport equations in the limit of strong collisionality. This
approach was developed in considerable detail in a classic article by Braginskii
(1965). As with the case of gas dynamics, the collision frequency � is assumed to
be sufficiently high that local thermodynamical equilibrium is attained more rapidly
than the relaxation of the plasma due to the presence of macroscopic gradients that
drive plasma transport. This requires that the orderings

@

@t
� �; � � r�1 
 L;

be satisfied, where � 
 vT =� is the mean free path and L defines a macroscopic
length scale over which the mean plasma parameters (density, velocity, temperature,
magnetic field) vary. Unlike a gas of neutral particles, gradients can vary
significantly along and perpendicular to magnetic field lines, so one needs
to distinguish between parallel (Lk) and perpendicular (L?) length scales.
Furthermore, the particle gyrofrequency (˝ 
 qB=m) introduces a further time
scale into the system, often larger than the collision frequency, thus

� 
 �

˝
� 1:

Obviously, this implies that the particle gyro- or Larmor radius rg D mav=.qaB/ D
v=j˝aj ' vTa=j˝aj � �. For this ordering, the ordering perpendicular to the mean
magnetic field can be relaxed with

� � Lk; ı 
 rg

L?
� 1:

Thus, for a magnetized plasma, the mean free path need only be short compared to
the parallel length scale, and this is the ordering that we shall assume henceforth in
this subsection. The distance that a particle travels nominally before experiencing a
collision is at least a mean free path along the field and a Larmor radius across the
field. Macroscopic gradients must be essentially absent over these scales i.e., the
plasma is essentially homogeneous on these scales.

We consider a plasma comprising electrons and protons only and develop a
transport theory in the presence of proton-proton, electron-proton, and electron-
electron collisions. Since the electrons do not collide with a stationary background,
we need to transform the kinetic equation for each species a to a coordinate frame
moving with the mean or bulk flow velocityua.r; t / of each species. This requires
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a transformation .x; v; t / ! .x; ca; t/ where ca D v � ua, so the derivatives
become

@

@t
! @

@t
� @ua
@t

� @

@ca
I

r ! r � @uaj
@x

@

@caj
I

rv ! rca :

The kinetic equation therefore becomes

@fa

@t
C .ua C ca/ � rfa C

�
qa

ma

�
E0 C ca � B

� �
�
@

@t
C ua � r

�

ua

�

� @fa
@ca

� caj @uak
@xj

@fa

@cak
D Ca.fa/; (4.33)

where E0 D E C ua � B is the motional electric field.
The dominant time scales are those associated with the collision frequency and

the gyrofrequency. For electrons, we can order the kinetic equation as

Cee.fe/C C0
ep.fe/C

�
e

me

ce � B
�

� @fe
@ce

D @fe

@t
C ue � rfe

C ce � rfe �
�
e

me

E0 C
�
@ue
@t

C ue � rue

��

� @fe
@ce

� c0
aj

@uek
@xj

@fa

@cek
� C1

ep.fe/;

where the higher order correction to the collision operator has been included on the
right because it acts more slowly than the leading order term.

Following the Chapman-Enskog expansion procedure, we solve the above
equation by expanding the distribution function as fe D fe0 C fe1 C : : :. To the
lowest order, the left hand side must vanish, which requires the distribution function
to be a Maxwellian at rest in the moving frame,

fe0 D ne

�
me

2�kTe

�3=2
e�ˇ2 ;

where ˇ2 D mec
2
e =2kTe . On using the zeroth order solution on the right hand side,

we obtain an equation for the next order solution fe1,

Cee.fe1/C C0
ep.fe1/C

�
e

me

v � B
�

� @fe1
@v

D
�
@

@t
C ue � r

�

lnnefe0 C
��

ˇ2 � 3

2

��
@

@t
C ue � r

�

ln kTe
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C v � r lnne C
�

ˇ2 � 3

2

�

v � r ln kTe C mev
kTe

�
�
e

me

E0

C
�
@

@t
C ue � rue

��

C mevj vk
Te

@uek
@xj

C �ep
mev � .ue � up/

kTe

�

fe0; (4.34)

where, for notational convenience, we have written v for ce . Integrating Eq. (4.34)
over velocity space yields the continuity equation (see Exercise below), showing that
d lnne=dt (where d=dt is the convective derivative) can be replaced by �r � ue .
Similarly, taking the first moment of (4.34) yields the momentum equation without
the viscous term, showing that (Exercise)

�
@

@t
C ue � r

�

ue C eE0

me

D Re � r .nekTe/
mene

:

The second moment of (4.34) yields the energy equation without the heat conduc-
tion, viscous heating, and energy exchange terms. Thus

3

2

�
@

@t
C ue � r

�

ln kTe C r � ue D 0;

which allows us to eliminate the d.kTe/=dt in (4.34).
Using the above results allows us to eliminate the time derivatives from (4.34),

giving the kinetic equation

Cee.fe1/C C0
ep.fe1/C
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e

me

v � B
�
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ıjk
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W e
jk
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fe0; (4.35)

where

W a
jk 
 @vaj

@xk
C @vak
@xj

� 2

3
.r � ua/ ıjk;

is the rate-of-strain tensor, as before. As with a neutral gas, this term introduces the
plasma viscous terms.
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A closely related analysis yields an equation corresponding to the electron
correction kinetic equation (4.35) for the proton kinetic problem,

Cpp.fp1/ �
�
e

mp

v � B
�

� @fp1
@v

D
��

ˇ2 � 5

2

�

v � r ln kTp C mp

2kTp

�

vj vk � v2

3
ıjk

�

W
p

jk

�

fp0; (4.36)

where the proton-electron collision operator has been assumed small, allowing the
frictional term Rpe to be neglected.

Exercises

1. Show that integrating (4.34) over velocity space yields the continuity equation

@ne

@t
C r � .neue/ D 0:

2. Show that the first moment of (4.34) yields the momentum equation without the
viscous term, and that

�
@

@t
C ue � r

�

Ue C eE0

me

D Re � r .nekTe/
mene

:

3. Show that the second moment of (4.34) yields the energy equation without the
heat conduction, viscous heating, and energy exchange terms, and hence that

3

2

�
@

@t
C ue � r

�

ln kTe C r � ue D 0:

4. Eliminate the time derivatives in (4.34) using the results from the Exercises above
to derive (4.35).

The kinetic equations (4.35) and (4.36) must be solved for the fe=i1 correction so
that a two-fluid description can be determined. The approach used by Braginskii is
to expand the distribution function as a series of orthogonal polynomials, which is,
as we have seen earlier, an attractive and systematic approach that yields accurate
results to any order, in principle. Typically, generalized Laguerre polynomials, also
known as Sonine polynomials, are used. The Sonine polynomials tend to converge
rather rapidly, so although the reduced system of equations is of infinite order, a
truncation at about order 3 is generally sufficient. Nonetheless, the full procedure is
tedious, so we simply provide the main results without derivation – the details can
be found in Braginskii’s review.
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We assume from the outset that the gyrofrequency is much greater than the
collision frequency i.e., � � 1, for both electrons and protons. Following
Braginskii, we introduce the collision times


e D 
p; 
p D p
2
pp;

and assume the strongly magnetized limit ˝a
a ! 1.
The force Re for electrons comprises both the drag force Ru and the thermal

force RT ,

Re D Ru C RT I
Ru D �mene


e

�
0:51

�
uek � upk

�
C �

ue? � up?
�� I

RT D �0:71nerkkTe C 3ne

2˝e
e
b � rkTe;

where b 
 B=B , ue=p are the electron and proton bulk velocities respectively,
and the electron gyrofrequency ˝ D �eB=me is negative. Observe that the term
.˝e
e/

�1 is of higher order than the preceding term for RT . Since momentum is
conserved in Coulomb collisions, Re D �Rp .

The electron heat flux also comprises a drag term and a thermal term,

qe D qeu C qeT I

qeu D 0:71nekTe

�
uek � upk

�
� 3nekTe

2˝e
e
b � �ue? � up?

� I

qeT D ��ekrkkTe � �eAb � rkTe � �e?r?kTe;

and the heat conductivities are defined by

�ek D 3:16
nekTe
e

me

; �eA D �5
2

nekTe

me˝e

; �e? D 4:66
nekTe

me˝2
e 
e

:

Since electrons are strongly tied to the magnetic field, fast electrons streaming along
the field can significantly distort a Maxwellian distribution because the collision
frequency decreases with velocity according to 
e � v3. This is reflected in both the
electron force term Ru (because fast electrons contribute to the bulk velocity more
than they do to friction) and the electron flux along the parallel direction (first term
in qT since fast electrons will stream more in one direction and slow electrons more
in the opposite direction).

The proton heat flux has terms proportional to the ion temperature gradient only,

qp D ��pk rkkTp C �
p
Ab � rkTp � �p?r?kTp;
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with the heat conductivities defined by

�
p

k D 3:9
npkTp
p

mp

; �
p
A D �5

2

npkTp

mp˝p

; �
p

? D 2
npkTp

mp˝2
p
p

:

The magnetization factor ˝
 separates the various heat conduction coefficients �.
The time scales are therefore significantly different for protons and electrons,
and the proton contribution is dominant perpendicular to the field whereas along
the magnetic field, the electron heat flux dominates. Note that the diamgnetic heat
flux term, carrying heat across the field perpendicular to the gradient, is not the
consequence of collisions (
e=p is absent), and we shall discuss this further below.

Heat exchange between protons and electrons results from temperature equilibra-
tion on the slow time scale 
pe and the frictional generation of heat, and is expressed
through

Qp D �Qe � Re � �ue � up
� D 3neme

mp
e

�
kTe � kTp

�
:

Like the Navier-Stokes equations for a non-magnetized gas, the viscosity tensor
is given by

�ij D �Wij C �r � uıij ;

where � and � are the viscosity coefficients and Wij is the rate-of-strain tensor,
as before. Because the transport of momentum occurs at different rates in different
directions for a magnetized plasma, the viscosity tensor is more complicated, and
has the form

�xx D �1
2
�0.Wxx CWyy/ � 1

2
�1.Wxx �Wyy/ � �3Wxy I

�yy D �1
2
�0.Wxx CWyy/ � 1

2
�1.Wyy �Wxx/C �3Wxy I

�xy D �yx D ��1Wxy C 1

2
�3.Wxx �Wyy/I

�xz D �zx D ��2Wxz � �4WyzI
�yz D �zy D ��2Wyz C �4WxzI
�zz D ��0Wzz;

for a coordinate system .x; y; z/ defined by the magnetic field orientation b D
.0; 0; 1/. Consistent with the Chapman-Enskog ordering, the viscous terms enter
the magnetized fluid equations at an order lower (either in terms of the ratio of the
gyroradius to the macroscopic perpendicular length scale, rg=L?, or the ratio of the
mean free path to the parallel macroscopic scale, �=Lk), i.e., rp � R � r � � .
The viscosity coefficients for protons are
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�
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2
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;

and for electrons

�e0 D 0:73n3Te
eI �e1 D 1

4
�e2 D 0:51

neTe

˝2
e 
e

I �e3 D 1

2
�e4 D neTe

2˝e

:

As with the heat flux, different scalings are present depending on the direction of
momentum transport. Along the magnetic field, the �0 are entirely due to particle
collisions and therefore resemble transport in a nonmagnetized gas. Transport
perpendicular to the magnetic field (�1;2) involves a scaling with the ratio of the
scattering time to the particle gyroradius, introduced through the factor .˝
/2.
The remaining viscous terms, �3;4 depend only on the gyrofrequency i.e., are
independent of the scattering time 
 , and correspond to a diamagnetic momentum
flux across the field.

4.9 Application 1: Transport Perpendicular to a Mean
Magnetic Field

Here we consider an alternative approach to the transport of particles, momentum,
and energy across a mean magnetic field in a plasma. Such flows are called
diamagnetic flows. In the section above, we saw that the perpendicular heat flux and
momentum flux were independent of particle collisions. The momentum equation
is given by

mana

�
@ua
@t

C ua � rua

�

D �rpa � r � �a C qana .E C ua � B/C Ra:

By taking the cross product of the momentum equation with B (and dropping the
subscript a) yields (b 
 B=B , and b � .u � b/ D u � .u � b/b 
 u � uk D u?)

u? D E � B
B2

C b � .rp C r � � � R Cmndu=dt/
mn˝

;

where d=dt denotes the convective derivative. This expression shows that the bulk
flow velocity perpendicular to the mean magnetic field is the sum of the E � B
drift and a diamagnetic drift velocity. Present in the diamagnetic term is the small
parameter ı D rg=L?. The viscous terms and resistive force are generally small,
and the inertial term typically varies slowly, so that to leading order we have
approximately

u? D E � B
B2

C b � rp
mn˝

:
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This ordering is certainly true whenever the particle distribution is close to a
Maxwellian. The perpendicular force R � �mnu? is small if �=˝ � 1. Neglecting
the inertial term is valid if the thermal speed and time variability is small. If a plasma
flow does not satisfy this criterion, then the convective term mnu � ru must be
included.

If the magnetic field B is constant and E D �r˚ , then the approximate
flow velocity u? is incompressible, i.e., r � u? D 0. If the flow is in general
incompressible, then it follows that

r � �uk C u?
� D 0;

indicating that the divergence of the parallel flow balances that of the perpendicular
flow.

A related approach can be used to derive the viscosity tensor if we approximate
the collision operator by the BGK operator,

C.f / D �.f0 � f /;

as we did for the gas kinetic problem. The kinetic equation can be expressed in
components as

@f

@t
C @

@xi
Œ.ui C ci / f �C @

@vi

��
eEi

m
C �ijk.uj C cj /˝k

�

f

�

D �.f0 � f /;

where c 
 v � u is the particle velocity relative to the bulk velocity, as before.
The gyrofrequency is eBk=m and �ijk is the Levi-Civita tensor, a completely
antisymmetric unit tensor in 3D such that �ijk D 1 if ijk is an even permutation
of 123, �ijk D �1 for odd permutations, and �ijk D 0 for repeated indices. Taking
the clcm-moment of the kinetic equation yields an equation for the pressure tensor
Plm and conductive heat flux term, where

Plm D m

Z
clcmfd

3v; qilm 
 m

Z
ci clcmfd

3v;

in the form

@Plm

@t
C @

@xi
.uiPlm C qilm/C @ul

@xi
Pim C @um

@xi
Pil

�˝k

�
�ljkPjm C �mjkPjl

� D �.pılm � Plm/: (4.37)

The non-diagonal elements of the pressure tensor are given simply by

Plm D pılm C �lm:
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Let us impose the Braginskii short-mean-free-path orderings discussed above to the
evolution equation for Plm. Thus, terms proportional to � and˝ will dominate, and
so to lowest order the distribution function is a Maxwellian f D f0. At this order,
the pressure tensor is symmetric and

Plm D pılm; qilm D 0:

We can therefore use these expressions in the small terms of (4.37) to obtain the
corrections at the next order for Plm – these are of course the terms proportional to
� and ˝. This may be represented formally as6

K.P / 
 S
˝
;

where S is the tensor defined by

Slm D
�
@p

@t
C @

@xi
.uip/

�

ılm C p

�
@ul
@xm

C @um
@xl

�

C �.Plm � pılm/;

and K is an operator defined by
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Pyz �Pxz 0

1

A :

As usual, the z-axis is defined by the magnetic field direction, so that ˝k=˝ D ık3.
The K-operator of Kaufmann has two useful properties. Since �lm D Plm � pılm,
K.P / D K.�/. Secondly, at lowest order, we have seen that the viscosity, heat flux,
and collisional terms vanish, so that to lowest order, entropy is conserved and

d lnp

dt
D 5

3

d lnn

dt
:

Consequently, the first term in S becomes
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from which we obtain
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6Kaufmann (1960).
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We can therefore rewrite K D S=˝ as a system of algebraic equations

0

@
2�xy �yy � �xx �yz

�yy � �xx �2�xy ��xz

�yz ��xz 0

1

A D 1

˝
.pW C ��/;

from which we can solve for � . Solving this system of six equations yields precisely
the same results as derived by Braginskii and quoted above, except that the viscosity
coefficients are a little different,

�0 D p
 I �1 D �0

1C 4˝2
2
I �2 D �0

1C˝2
2
I �3 D 2�4 D 2˝


1C 4˝2
2
�0;

where 
 D ��1. The form of the viscosity tensor is therefore recovered and the
qualitative form of the dependence of the viscous coefficients on gyrofrequency and
collision frequency is correct.

In the collisionless limit, ˝
 � 1, the non-diagonal elements of the viscosity
tensor become

�xy D �yx D p

4˝
.Wxx �Wyy/I

�xz D �zx D � p

˝
WyzI

�yz D �zy D p

˝
Wxz;

which agrees exactly with Braginskii since p=2˝ coincides with the gyroviscosity
coefficient �3 when ˝
 � 1. Gyroviscosity is a consequence of the Larmor
gyration of particles and not collisions, and in the limit of ˝
 >> 1 is unaffected
by collisions.

Consider now the diamagnetic flow of heat. Determining heat transport is entirely
analogous to determining the transport of momentum across the magnetic field in a
collisionally dominated plasma. In this case, we take the energy moment .mv2=2/v
of the kinetic equation, and assume that the flow velocity is small v � ıvT � vT .
This assumption yields the simplification that there is little to distinguish between v
and c D v � u at the lowest order in the pressure tensor. We therefore obtain
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E � P C 3

2
pE C Q � B
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D G;

where

Qi D qi C 5

2
pui C �ij uj C 1

2
mnu2uj ' qi C 5

2
pui ;
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since ˘ij D pıij and �ij D 0 in a Maxwellian plasma. A “heat stress” tensor

Hij 

Z
1

2
mv2vj vj fd

3v

has been introduced, together with the collisional rate of change of the total heat
flux

G 

Z
1

2
mv2vC.f /d3v:

If the particle distribution function is close to a Maxwellian, then Hij D
.5pT=2m/ıij and Pij D pıij (Exercises). The perpendicular heat flux Q? is
obtained from the cross product of the transport equation with B,

Q? D 5p

2

�
E � B
B2

C b � rp
mn˝

�

C 5p

2m

b � rT
˝

;

where the time derivative @Q=@t has been neglected, and we have assumed that

G � b
˝

� �

˝
q?;

is small. On using the expression for the diamagnetic drift velocity and the slow flow
approximation Q ' qC5p=2u, the lowest order conductive part of the diamagnetic
heat flux is given by

q? D 5p

2m

b � rT
˝

:

1. By taking the clck-moment of the kinetic equation, derive the evolution equation
for the pressure tensor Plm, Eq. (4.37).

2. Complete the steps in deriving the Kaufmann representation for Slm and the K-
operator.

3. Show that for a Maxwellian distribution,

Hij 

Z
1

2
mv2vj vj fd

3v D 5

2m
pT ıij :
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4.10 Application 2: The Equations
of Magnetohydrodynamics

One of the most important simplifications of the system of transport equations is
the single magnetized fluid system of equations – essentially the ideal gas dynamic
equations modified by the inclusion of the Maxwell equations. Let us assume that
the distribution function for both electrons and protons is a Maxwellian distribution,
and for simplicity we restrict ourselves to a simple two-component plasma. It is
straightforward to include more particle species. The equations for the number
density and momentum transport are given by

@na

@t
C r � .naua/ D 0I

mana

�
@ua
@t

C ua � rua

�

D �rpa C qana .E C ua � B/C Ra;

where a 
 e; p identifies the species (electron, proton). As before, Rp D �Re .
This set of equations corresponds to a two-fluid model. We can combine the electron
and ion fluids to obtain a one-fluid model, which will be the magnetohydrodynamic
(MHD) model.

The single fluid is characterized by a mass density

�.x; t / 
 mene Cmpnp ' mpnp.x; t /;

where the last approximation results from assuming me=mp � 1, a charge density

�q 
 qene C qpnp D e.np � ne/;

and a center-of-flow velocity

u 
 mpnpup Cmeneue
�

' up;

(again assuming me=mp � 1), a current density

J 
 qpnpup C qeneue D e.npup � neue/;
and a total pressure

P 
 pp C pe:

By combining the individual two-fluid equations appropriately, we can derive a set
of equations that relate and describe the evolution of these quantities. Of particular
note will be an equation, Ohm’s law, relating the magnetic field, electric field, and
the single fluid flow velocity.
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By multiplying the proton and electron continuity equations by their respective
masses and adding yields immediately

@�

@t
C r � .�u/ D 0;

which is the conservation of mass equation. Similarly, by multiplying the proton and
electron continuity equations by their respective charges and adding yields

@�q

@t
C r � ��qJ

� D 0;

which is the conservation of charge equation.
The construction of the single fluid momentum equation results from summing

the proton and electron force equations, using Rp D �Re , regarding ua and @na=@t
as small and neglecting the products of small quantities. This then yields the total
momentum equation as

�

�
@u
@t

C u � ru
�

D �rP C �qE C J � B:

The final equation that is needed is of course for the current. This equation,
known as the generalized Ohm’s law, follows from multiplying the proton and
electron momentum equations by qa=ma respectively, summing, and neglecting
quadratic terms in the small quantities ua and @na=@t , and using qp D �qe D e.
This yields

@J
@t

D � e

mp

rpp C e

me

rpe C
�
e2ne

me

C e2np

mp

�

E C e2ne

me

ue � B

Ce2np

mp

up � B C
�
e

mp

C e

me

�

Rp:

The term multiplying the electron velocity can be expressed as

e2ne

me

ue D e

me

�
neeue � npeup

�C e2

mpme

mpnpup

' � e

me

J C e2

mpme

�
mpnpup Cmeneue

�

D � e

me

J C e2

mpme

.�u/ :

We can use this expression to simplify the generalized Ohm’s law, together with the
following approximations, me=mp � 1, np ' ne , and pp ' pe ' P=2, to obtain

@J
@t

D � e

2me

rP C e2�

memp

.E C u � B/ � e

me

J � B C e

me

Rp:
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We suppose for simplicity that we may approximate

Rp / up � ue / J so that Rp D � �e

mp�
J;

where we have introduced the conductivity � . A negative sign was chosen to reflect
the expected decrease in current J due to proton-electron collisions. Thus, the
generalized Ohm’s law can be expressed in the commonly used form

mpme

�e2
@J
@t

D mp

2�e
rP C E C u � B � mp

�e
J � B � J

�
: (4.38)

The term “Ohm’s law” derives from the neglect of all but the two terms in (4.38)
that give

J D �E;

which is Ohm’s law with conductivity � . For very low frequencies, one can typically
ignore the @J=@t term in the generalized Ohm’s law. For low temperature plasmas,
the rP term can also be neglected, and if the current is small, we can neglect the
Hall term J � B compared to the u � B term. Subject to these assumptions, Ohm’s
law becomes

J D � .E C u � B/ :

Finally, in the limit of vanishing collisions, the conductivity becomes infinite, so
that we must have

E D �u � B:

The one-fluid equations are coupled to Maxwell’s equations,

r � E D �@B
@t

I

r � B D �0J C "0�0
@E
@t

I
r � B D 0:

Maxwell’s equations and the one-fluid or MHD equations correspond to 14 equa-
tions in 14 unknowns, �, �q , u, J;E, and B, provided we assume that the pressure
P can be expressed in terms of �. "0 is the vacuum permittivity and �0 the
permeability.

In the low frequency limit and infinite conductivity, no charge imbalance is
allowed, i.e., �q D 0. These conditions then yield the equations of ideal MHD,
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@�

@t
C r � .�u/ D 0I (4.39)

�

�
@u
@t

C u � ru
�

D �rP C J � BI (4.40)

@B
@t

D r � .u � B/ I (4.41)

r � B D �0JI (4.42)

r � B D 0; (4.43)

where the low-frequency assumption allowed us to neglect the @E=@t term.
Equations (4.39)–(4.42) are typically augmented by an equation for the pressure,
the simplest possibility being the adiabatic equation of state,

@P

@t
C u � rP C �Pr � u D 0; (4.44)

where � is the adiabatic index of the system.

Exercises

1. Linearize the ideal MHD equations (4.39)–(4.44) with � D �0 D const., B D
B0 Oz C ıB Oy, u D ıuOy, J D ıJ Ox. Seek solutions of the linearized 1D MHD
equations in the form exp .i!t � kz/, where ! is the wave frequency and k the
corresponding wave number and derive the Alfvén wave dispersion relation.

2. For B D B Oz, linearize the ideal 1D (say x) MHD equations about a stationary
constant state. Seek solutions of the linearized 1D MHD equations in the form
exp .i!t � kx/, where ! is the wave frequency and k the corresponding wave
number and derive the magnetosonic wave dispersion relation.

Before concluding this section, we discuss briefly the conservation form of
the Eqs. (4.39)–(4.44). Evidently, Eq. (4.39) is already in conservation form (mass
conservation), as is (4.43). By using (4.39), we have

�

�
@u
@t

C u � ru
�

D @�u
@t

C r � .�uu/ ;

and, using the vector identity a � .r � b/ D .rb/ � a � r � .ab/ � br � a, we have

�J � B D 1

�0
B � .r � B/ D 1

�0
r
�
1

2
B2

�

� 1

�0
r � .BB/;

which yields the conservation form of the momentum equation,

@.�u/
@t

C r �
�

�uu C
�

P C 1

2�0
B2

�

I � 1

�0
BB
�

D 0:
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By introducing the internal energy e as before with P D .� � 1/�e, where �
denotes the adiabatic index for the magnetized gas, we can rewrite the gas pressure
equation (4.44) as

@.�e/

@t
C u � r.�e/C ��er � u D 0;

or

@.�e/

@t
C r � .�eu/C .� � 1/�er � u D 0;

giving

@.�e/

@t
C r � .�eu/C Pr � u D 0I (4.45)

@e

@t
C u � re C .� � 1/er � u D 0: (4.46)

The conservation of energy equation corresponds to the temporal evolution of the
kinetic, internal, and magnetic energy. Considering each of these separately and in
turn yields first for the kinetic energy (taking u� (4.40))

@

@t

�
1

2
�u2

�

C r �
�
1

2
�u2u

�

C u � rP � u � J � B D 0:

The internal energy expression is given by (4.45). Finally, taking B� (4.41) yields

@

@t

�
1

2
B2

�

C r � ŒB � .u � B/� � .u � B/ � r � B D 0;

which implies7

@

@t

�
1

2
B2

�

C r � .B � Bu � u � BB/C �0u � J � B D 0:

Adding these results together for the kinetic, internal, and magnetic energy yields
the conservation of energy equation (4.49) below.

7The following identities are used,

r � .a � b/ D b � r � a � a � r � b;

and
a � .b � c/ D .a � c/b � .a � b/c:
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Finally, since

r � E D �r � .u � B/ D r � .uB � Bu/;

Equation (4.41) can be expressed in the conservation of magnetic flux form (4.50)
below.

We collect the results above to express the conservation form of the ideal MHD
equations through

@�

@t
C r � .�u/ D 0I (4.47)

@.�u/
@t

C r �
�

�uu C
�

P C 1

2�0
B2

�

I � 1

�0
BB
�

D 0I (4.48)

@

@t

�
1

2
�u2 C �e C 1

2�0
B2

�

Cr �
��
1

2
�u2 C �e C P C 1

�0
B2

�

u � 1

�0
u � BB

�

D 0I (4.49)

@B
@t

C r � .uB � Bu/ D 0I (4.50)

r � B D 0: (4.51)

Finally, note that we may express the entropy (Sect. 3.1) generally as S D
Cv ln.P��� /C const. (Cv the specific heat at constant volume) and so, from (4.39)
and (4.44), the evolution equation for S is given by

@S

@t
C u � rS D 0:

We can then derive an additional conservation law, the conservation of entropy per
unit volume,

@

@t
.�S/C r � .�Su/ D 0: (4.52)

These conservation relations are important in that it allows us to introduce the notion
of weak solutions to the system of MHD equations, these being critical to treating
discontinuities in a magnetized gas flow.

Before concluding this section, we derive two further conservation results that are
fundamental elements of the theory of MHD. The first is the frozen-in flux theorem
derived originally by H. Alfvén. Consider a surface S bounded by a closed contour
C moving with the local magnetized fluid velocity u8 (Fig. 4.5). We may consider

8Consider a line element d l in a fluid flow u.x; t / with ends at x and x C d l. The motion of d l is
given by the Lagrangian derivative of d l,

d

dt
.d l/ D d.x C d l/

dt
� dx
dt

D u.x C d l/� u.x; t / D d l � ru:
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Fig. 4.5 Magnetic flux
passing through a closed
surface S bounded by a
curve C

We may define a surface element dS � d l1 � d l2 and determine its equation of motion from the
Lagrangian derivative

d

dt
.dS/ D d

dt
.d l1/� d l2 C d l1 � d

dt
.d l2/ D d l1 � ru � d l2 � d l2 � ru � d l1;

after using the result for the motion of a line. The vector identity .a � b/ � r D ba � r � ab � r
applied to the fluid velocity u gives

Œ.a � b/� r�� u D .ba � r/� u � .ab � r/� u D �a � .ru/� b C b � .ru/� a:

With a D d l1 and b D d l2 we have d l1 � ru � d l2 � d l2 � ru � d l1 D �.dS � r/ � u D
�.ru/ � dS C r � udS (using .a � r/� b D .rb/ � a � ar � b), we can obtain the equation for
the kinematic motion of a surface element,

d

dt
.dS/ D �.dS � r/� u D �.ru/ � dS C r � udS:

Finally, we note that the equation for the kinematic motion of a volume element dV � dS �d l3 D
.d l1 � d l2/ � d l3 can be derived using the above result as

d

dt
.dV / D r � udV:

This last result can be used to show that the mass of a fluid element dM � �dV is constant, that
momentum of a fluid element d.�u/dV is not constant, and that the total energy density of a fluid
element is not constant.
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the magnetic flux through a surface element d	 
 B � dS , using the Lagrangian
form for the magnetic flux, or induction equation,

dB
dt

D @B
@t

C u � rB D B � ru � Br � u;

and the kinematic equation of motion for the convected surface element dS , to
obtain

d

dt
.d	/ D d

dt
.B � dS/ D dB

dt
� dS C B � d

dt
.dS/

D .B � ru � Br � u/ � dS C B � .�.ru/ � dS C r � udS/ D 0: (4.53)

Consequently, the magnetic flux through a co-moving surface element is constant,
and since this holds for any surface element, the flux through any surface bounded
by a contour C moving with the fluid is conserved, i.e.,

	 D
Z

C

B � ndS D const.

Note that we can combine the Lagrangian form of the conservation of mass and the
induction equation to obtain

d

dt

�
B
�

�

D 1

�
.B � ru � Br � u/C B

�
r � u D

�
B
�

�

� ru: (4.54)

This equation is structurally identical to the kinematic equation of motion for a line
element d l, so a line element d l k B moves exactly as B=�. Thus, plasma on this line
element and magnetic field line move together, often described as the magnetic field
lines are frozen into the plasma. The concept of field lines and flux tubes, although
a mathematical construction, offers considerable insight into our understanding of
magnetic fields. At every point, the field lines follow the direction of the magnetic
field and are therefore defined by the characteristic equations

dx

Bx
D dy

By
D d z

Bz
:

A magnetic or flux surface is one that is everywhere tangential to the field i.e., the
normal to the surface is everywhere perpendicular to B. An open ended cylindrical
magnetic surface defines a flux tube, and the density of field lines through a flux
tube can represent the strength of the field.

The divergence-free or solenoidal condition for the magnetic field, i.e., r �B D 0

indicates that the a vector potential A can be used to represent the magnetic field,

B D r � A:
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The electric field (Ohm’s law) then becomes

E D �u � .r � A/;

and the induction equation can be expressed in terms of A,

@A
@t

D u � .r � A/ � r˚;

where ˚ is a scalar potential. The above equations are invariant under a gauge
transformation so we can choose ˚ D 0 without loss of generality. We introduce
the magnetic helicity

K D
Z

V

A � BdV; (4.55)

where the integration is taken over the volume of some flux tube. Consider now the
Lagrangian rate of change of the magnetic helicity,

dK

dt
D
Z �

dA
dt

� B C A � dB
dt

�

dV C
Z

A � B
d

dt
.dV /

D
Z �

@A
@t

� B C u � .rA/ � B C A � @B
@t

C u � .rB/ � A C A � Br � u
�

dV

D
Z
Œ.u � B/ � B C A � r � .u � B/C r � .A � Bu/� dV

D
Z

r � Œ.u � B/ � A C A � Bu� dV

D
Z
.A � uB � A � Bu C A � Bu/ � ndS D 0;

because B � n D 0 on the boundary of a flux tube and certain vector identities
were used to obtain the second last line.9 Thus, the magnetic helicity of any flux
tube is conserved in ideal MHD. The concept of magnetic helicity is of particular
importance to MHD studies of plasma fusion devices and coronal magnetic
fields.

9The following vector identity was used,

r � .a � b/ D b � .r � a/� a � r � b;

and identifying b � u � B and a � A. Thus,

.u � B/ � rA � A � r � .u � B/ D r � .A � u � B/:
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Exercises

1. Show using the kinematic equation of motion for a volume element that mass
in a fluid element dM 
 �dV is conserved. Show that the momentum of a
fluid element d.�u/dV is not constant, and that the total energy density �u2=2C
P=.� � 1/C B2=2�0 of a fluid element is not constant.

2. Derive the frozen-in field equation (4.54).

4.11 Application 3: MHD Shock Waves

In this section, we discuss the theory of magnetohydrodynamic (MHD) shocks
based on the conservation form of the MHD equations (4.47)–(4.51). An extensive
discussion of MHD shock theory can be found in the classic works of Cabannes
(1970) and Anderson (1963). We confine our attention to steady planar shocks
moving in a direction normal to the plane of the shock (see Fig. 4.6). As with gas
dynamic shocks, we can derive the MHD form of the Rankine-Hugoniot conditions
from the conservation form of the MHD equations. We can choose a coordinate
system in which the velocity and magnetic field vectors on both sides of the shock
are co-planar i.e., lying in the same plane. If we suppose the .u;B/-plane to be in the
.x; y/-plane and the shock wave to lie in the .x; z/-plane (Fig. 4.6), the generalized
Rankine-Hugoniot conditions are given by

Œ�ux� D 0I (4.56)
�

�u2x C P C 1

2�0
B2
y

�

D 0I (4.57)

B2

B1

U2

U1

y 

x 

2

1

DOWNSTREAMUPSTREAM

Fig. 4.6 Schematic of an
oblique MHD shock located
in the x D 0 plane of a
rectangular Cartesian
coordinate system OXYZ.
The fluid velocity u and
magnetic field B lie in the
.x; y/-plane and the electric
field E lies along the z-axis
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�

�uxuy � 1

�0
BxBy

�

D 0I (4.58)

�

�ux

�
�

� � 1P C 1

2
u2
�

C 1

�
.E � B/x

�

D 0I (4.59)

ŒEt � D 0I (4.60)

ŒBx� D 0; (4.61)

where .ux; uy/ is the fluid velocity, u2 D u2xCu2y . The square brackets Œ�� are defined
in the usual way to mean the difference between the quantities evaluated upstream
and downstream of the shock.

If a transformation is made to a new reference frame with constant transverse
velocity ut , the corresponding transformation of the transverse electric field is

E0
t D Et C ut � B;

or

E 0
y D Ey C uzBx; E 0

z D Ez � uyBx:

Thus, for Bx D const. ¤ 0, uz and uy can be chosen so that E 0
y D E 0

z D 0.
The generalized Rankine-Hugoniot conditions are simplified considerably in such a
reference frame, known as the de Hoffmann-Teller frame, in which E 0

y D E 0
z D 0,

ensuring that the magnetic field and velocity vectors are parallel (i.e., co-planar),
and allowing the transverse electric field to be replaced by

uxBy � uyBx D 0; (4.62)

on both sides of the shock.
On introducing the specific volume of the fluid, 
 D 1=� and the mass flux

density m D �ux , the conservation of energy condition (4.59) becomes

Œw�C 1

2
m2
	

2

C 1

2

"�

uy � 1

m�0
BxBy

�2#

C 1

�0

h

B2

y

i
� B2

x

2m2�20

h
B2
y

i
D 0;

where w D �

��1P=� denotes the enthalpy per unit mass. From the transverse
momentum condition (4.58), the third term above is zero. On using the normal
momentum relation for m, we obtain the MHD Hugoniot relation

Œw�C hP iŒ
 �C 1

2�0
ŒBy�

2Œ
 � D 0; (4.63)
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where hQi 
 1
2
.Q1 C Q2/. Equation (4.63) differs from the hydrodynamic form

only in the third term. The MHD Hugoniot relation (4.63) can be used directly to
show that entropy increases or decreases across a shock as the density � increases
or decreases across a shock,10 showing that only compressive shocks are physically
admissible. We do not provide a direct proof here.

For a perfect gas with adiabatic index � , the square of the sound speed and the
enthalpy can be expressed as

a2s D �P

�
I w D a2s

� � 1 :

We introduce the dimensionless parameters

r D �2

�1
I

MA D ux
VAn

D 1

r1=2

s
�0m2

B2
x

;

where r is the shock compression ratio, MA the Alfvénic Mach number of the
flow and VAn the component of the Alfvén velocity normal to the shock. On
rewriting (4.56)–(4.61), using the sound speed and enthalpy relations for an ideal
gas, we have

�1ux1 D �ux2 D mI (4.64)

�1a
2
s1

�
C �1u

2
x1 C 1

2�0
B2
y1 D �2a

2
s2

�
C �2u

2
x2 C 1

2�0
B2
y2I (4.65)

�1ux1uy1 � 1

�0
BxBy1 D �2ux2uy2 � 1

�0
BxBy2I (4.66)

�1ux1

�
a2s1
� � 1 C 1

2
u21

�

C 1

�0
By1

�
ux1By1 � uy1Bx

�

D �2ux2

�
a2s2
� � 1 C 1

2
u22

�

C 1

�0
By2

�
ux2By2 � uy2Bx

� I (4.67)

uy1Bx � ux1By1 D uy2Bx � ux2By2I (4.68)

Bx1 D Bx2 D Bx: (4.69)

The transverse momentum equation (4.66) and the transverse electric field equa-
tion (4.68) can be solved for uy2 and By2,

uy2 D uy1 C .r � 1/ tan 
1
M2
A1 � r ux1I (4.70)

10See e.g., Boyd and Sanderson (2003).
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By2 D M2
A1 � 1

M2
A1=r � 1By1; (4.71)

where tan 
 
 By=Bx , and, in this geometry, is the angle between the magnetic
field and the shock normal upstream of the shock. On using (4.70) and (4.71), we
can rewrite parts of the normal momentum (4.65) and total energy (4.67) equation
as follows,

1

2�0

�
B2
y2 � B2

y1

�
D .r � 1/M2

A1

.r C 1/M2
A1 � 2r

.M2
A1 � r/2

B2
y1

2�0
I

B2
y2

�0�2
� B2

y1

�0�1
D .r � 1/ M4

A1 � r
.M2

A1 � r/2
B2
y1

�0�1
I

1

2

�
u2y2 � u2y1

�
� Bx

�0m

�
By2uy2 � By1uy1

� D �1
2
.r � 1/.r C 1/M2

A1 � 2r
.M2

A1 � r/2
B2
y1

�0�1
:

By using the above results in the normal momentum equation and dividing by
B2
x=�0, we obtain a dimensionless equation,

a2s2=V
2
An2 � a2s1=V 2

An1

�
CM2

A2 �M2
A1 C .r � 1/M2

A1

.r C 1/M2
A1 � 2r

2.M2
A1 � r/2 tan2 
1 D 0:

(4.72)

On dividing the energy equation (4.67) bymB2
x=�0�2 and using the above relations,

we find

1

� � 1
�
a2s2
V 2
An2

� a2s1
V 2
An1

�

� r � 1
� � 1

a2s1
V 2
An1

C 1

2

�
M2
A2 � rM2

A1

�

C r.r � 1/
2

2M2
A1 � r � 1

.M2
A1 � r/2 M2

A1 tan2 
1 D 0: (4.73)

Since

M2
A1

M2
A2

D �2

�1
D r;

we can eliminate M2
A2 from (4.73) to obtain the equation for the shock adiabatic,

�
M2
A1 � r�2

�

M2
A1 � 2ra2s1=V

2
An1

r C 1 � �.r � 1/



� rM2
A1

�
2r � �.r � 1/
r C 1 � �.r � 1/M

2
A1 � r




tan2 
1 D 0: (4.74)
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Alternatively, since M2
A1=M

2
A2 D r , we can express the shock adiabatic as the so-

called shock polar relation or shock cubic,

M2
A1

n
.� � 1/ �M2

A2 � 1�2 C 	
.2 � �/M2

A2 C � � 1
 tan2 
1
o

D
�

.� C 1/M2
A2 � 2 a

2
s1

V 2
A1

sec2 
1



�
M2
A1 � 1�2 �M2

A2

	
�M2

A2 � � � 1
 tan2 
1;

(4.75)

where VA is the Alfvén velocity based on the magnetic field magnitude.
The importance of the shock polar relation is that, by specifying the upstream

variables as1, VA1, 
1, and MA1, the downstream Alfvén Mach number can be
computed easily, and the remaining downstream variables determined from

By2
�
M2
A2 � 1� D By1

�
M2
A1 � 1� I

uy2 D uy1 C Bx

�0m
.By2 � By1/I

r D �2

�1
D ux1

ux2
D M2

A1

M2
A2

I

P2 D P1 C �1u
2
x1

�

1 � 1

r

�

C 1

2�0

�
B2
y1 � B2

y2

�
:

The nature of the shock polar can be made more transparent by expressing the
variables a2s1=V

2
An1 and tan2 
1 in terms of the fast and slow magnetosonic speeds in

the upstream plasma. The shock adiabatic is a bicubic in M2
A1, which implies that

three finite amplitude shocks are possible, corresponding to slow, intermediate, and
fast mode shocks. In the weak shock limit, r ' 1, Eq. (4.74) reduces to

.M2
A1 � 1/

�

.M2
A1 � 1/

�

M2
A1 � a2s1

V 2
An1

�

�M2
A1 tan2 
1

�

D 0; (4.76)

which, on introducing a phase velocity Vp , is reminiscent of the well-known
expression for the speeds of propagation of perturbations in a perfectly conducting
fluid embedded in a magnetic field, i.e.,

.V 2
p � V 2

A/
h
V 4
p � .V 2

A C a2s /V
2
p C V 2

Ana
2
s

i
D 0: (4.77)

The first factor in both (4.76) and (4.77) represents Alfvén wave propagation and
the second magnetosonic propagation. Thus, to be consistent with (4.77), fast and
slow magnetosonic Mach numbers MC and M� must satisfy

.M2
A � 1/

�

M2
A � a2s

V 2
An

�

�M2
A tan2 
1 D .M2

A �M2C/.M2
A �M2�/;
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where

M2˙ D 1

2

8
<

:
a2s

V 2
An

C tan2 
1 C 1˙
s�

a2s

V 2
An

C tan2 
1 C 1

�2
C 4 tan2 
1

9
=

;
;

or equivalently

M˙ D Vf;s

VAn
;

where Vf and Vs are the fast and slow magnetosonic speeds satisfying the
dispersion relation (4.76). Thus, we have established that weak shocks correspond
to magnetosonic waves and have phase velocities Vp D ˙Vf , Vp D ˙Vs .

On employing the relations

a2s

V 2
An

D M2CM2�I tan2 
1 D .M2C � 1/.1 �M2�/;

the shock polar relation (4.75) reduces to

M2
A1 �M2

A2 D
2.M2

A2 � 1/.M2
A2 �M2

1C/.M2
A2 �M2

1�/
.� C 1/.M2

A2 � 1/2 C .1 �M2
1�/.M2

1C � 1/ 	.2 � �/M2
A2 C � � 1
 : (4.78)

Hence, specifying the fast and slow magnetosonic Mach numbers ahead of the shock
yields a single curve along which all shocks must lie. Furthermore, in general, 0 <
M1� < 1 < M1C.

As discussed above, entropy increases across a shock if and only if the shock is
compressive. Since M2

A / 1=�, the shock is compressive, provided M2
A1 > M2

A2 in
Eq. (4.78); therefore M2

A2 must satisfy one of the inequalities

M2
1� < M2

A2 < 1; (4.79)

1 < M2
1C < M2

A2: (4.80)

Shocks in which the downstream normal fluid speed is sub-Alfvénic, (4.79), are
called slow mode shocks, whilst those that satisfy the super-Alfvénic inequal-
ity (4.80) are called fast mode shocks. The weak shock solutions for which r D 1

correspond to an Alfvénic shock (MA2 D 1) and a fast and slow magnetosonic wave
(MA2 D M1C and MA2 D M1� respectively). A shock with 
1 ¤ 0ı is generally
referred to as an oblique shock. Shocks that have either 
1 D 0ı or 
1 D 90ı are
called parallel or perpendicular shock waves respectively, and shocks for which

1 � 45ı are described as quasi-parallel whereas shocks for which 
1 > 45ı are
described as quasi-perpendicular.
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Fig. 4.7 An example of the Alfvén Mach number shock polar (4.75) in which the upstream plasma
beta ˇp1 D 1 and the upstream magnetic field angle (or shock obliquity) is 
1 D 30ı. For
compressive shocks, M2

A1 > M
2
A2 (Webb et al. 1987)

A schematic11 of the shock polar (4.75) or (4.78) is illustrated in Fig. 4.7 for an
upstream state 
1 D 30ı and plasma beta ˇp1 D 1, where

ˇp 
 P

B2=2�0
I a2s

V 2
A

D �

2
ˇp:

The straight line r D 1 lies in the M2
A1-M

2
A2 plane and intersects the polar profile

at the square of the small disturbance speeds. The asymptote of the shock curve as
MA1 tends to infinity is given by r D .� C 1/=.� � 1/ D 4 if � D 5=3. This is
the maximum possible compression ratio for a strong MHD shock. Those sections
of the shock curve above the line r D 1 correspond to expansion shocks, which are
inadmissible physically since they violate the second law of thermodynamics. Hence

11Relativistic oblique magnetohydrodynamic shocks by Webb et al. (1987).
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the only physically acceptable solutions are those below the line r D 1 i.e., the arcs
ABC and EF that correspond to compressive solutions. The arc AB is the locus
of slow mode shocks and EF of fast mode shocks. The double-valued regime BC
(two possible downstream states corresponding to a single upstream state) represent
unstable shocks which disintegrate spontaneously into several waves. The points
A, B, and E correspond respectively to the slow magnetosonic wave, the Alfvén or
intermediate shock, and the fast magnetosonic wave. The point B at whichMA1 D 1

corresponds to the slow mode switch-off shock in which the downstream magnetic
field angle 
2 D 0ı and Bt2 D 0. On the arc AB, Bt2 > 0 whereas on the arc BC,
Bt2 < 0.

Figure 4.8 illustrates the effect of varying the upstream field angle 
1 with ˇp1 D
1 and � D 5=3 on MHD shocks. When 
1 D 0 in the shock polar relation (4.75),
one obtains either

M2
A2 D 1;

or

M2
A2 D � C 1

� � 1M
2
A1 C 2

� C 1

a2s1
V 2
A1

:

This relation gives the inverse compression ratio of a pure gas shock12 i.e.,

r�1 D �1

�2
D � � 1
� C 1

C 2

� C 1

1

M2
s1

;

whereMs1 D ux1=as1 is the acoustic Mach number of the gas upstream of the shock.

As 
1 �! 0, the kink in the shock polar curve near M2
A1 D 1 (Fig. 4.8c)

degenerates into the straight line segment AB of Fig. 4.8d. The line AB of Fig. 4.8d
corresponds to switch-on shocks for which the upstream tangential magnetic field
is zero yet downstream is non-zero and MA2 D 1. This implies

tan 
2 D M2
A1 � 1

M2
A2 � 1 tan 
1: (4.81)

To determine the behavior of 
2 as 
1 �! 0 and MA2 �! 1, we substitute (4.81)
into the shock polar relation (4.75) and let 
1 �! 0 andMA2 �! 1 simultaneously,
to obtain

tan2 
2 D 2.M2
A1 � 1/

�

1 � a2s1
V 2
A1

� � � 1
2

.M2
A1 � 1/

�

; (4.82)

12Landau and Lifshitz (2000).
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Fig. 4.8 These figures illustrate how the Alfvén Mach number shock polar (4.75) changes as the
upstream magnetic field angle 
1 varies (
1 D 60ı, 30ı, 1ı, and 0ı) for ˇp1 D 1. Case (d) shows
both the pure gas dynamical shock (the solid line passing through B) and switch-on shocks (the
dashed line AB) (Webb et al. 1987)

which implies that 
2 is non-zero in this limit. Furthermore, Eq. (4.82) implies that
the Alfvénic Mach number must satisfy the inequality

1 < M2
A1 < 1C 2

� � 1
�

1 � a2s1
V 2
A1

�

;
a2s1
V 2
A1

< 1: (4.83)

This implies that switch-on shocks occur only in low beta plasmas satisfying ˇp <
2=� . The lower and upper limits on M2

A1 in (4.83) correspond to the points A and
B of Fig. 4.8d. From the auxiliary relations listed above, it is easily seen that the
pressure jump across a switch-on shock is given by
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ŒP �

P1
D .� � 1/.r � 1/

�

1C .� � 1/.r � 1/
2a2s1=V

2
A1




;

where in this case, the compression ratio is r D M2
A1.

Thus, besides providing a convenient method of calculating the downstream state
of the fluid after specifying the upstream fluid parameters, the shock polar relation
furnishes an elegant geometric classification of the possible shocked downstream
states and also contains the dispersion relation for small amplitude waves.

Exercises

1. Derive the shock polar relation (4.75) from the shock adiabatic (4.74).
2. Derive the alternative form of the shock polar relation (4.78).
3. Solve the shock polar relation numerically and plot curves corresponding to those

of Fig. 4.8 for ˇp1 D 0:1 and ˇp1 D 4.
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Chapter 5
Charged Particle Transport in a Collisionless
Magnetized Plasma

The solar wind, undoubtedly like many other astrophysical plasmas, is essentially
collisionless and the description of a plasma based on particle collisions as described
in Chap. 3 is inappropriate. Instead, interplanetary plasmas and astrophysical plas-
mas typically possess numerous waves and fluctuations that include a fluctuating
magnetic field. Many studies, beginning with the landmark observational studies
of Belcher and Davis (1971) and Coleman (1968) revealed the presence of both
Alfvén waves and extended power-law spectra for the energy density of solar
wind magnetic fluctuations. These low frequency magnetic field fluctuations can be
interpreted in terms of an MHD turbulence description. The turbulence description
of fluctuations in the solar wind has become increasingly refined, and today, solar
wind turbulence is thought to comprise a superposition of propagating Alfvénic
fluctuations (the minority component, sometimes called the slab component) and a
dominant 2D component that is non-propagating. The two-dimensional component
has velocity and magnetic field components and wave numbers nearly perpen-
dicular to the background magnetic field with “zero frequency.” The origin of
the terminology is from the shear Alfvén wave dispersion relation ! D VAjkkj,
where kk is the wave number parallel to the background mean magnetic field B0
and VA is the Alfvén speed. For perpendicular wave numbers, ! D 0 so 2D
magnetic turbulence has zero frequency modes and non-propagating fluctuations.
A turbulent magnetic field in a moving medium, such as the solar wind, scatters
charged particles in pitch-angle. Thus, unlike the collisional plasma considered in
Chap. 3, the Fokker-Planck coefficients for scattering must now account for particle
scattering by forward and backward propagating electro-magnetic waves (Alfvén
waves, magnetosonic modes, etc.), randomly propagating magnetic fluctuations for
which a wave description is inappropriate (MHD turbulence), waves that may be
resonant with certain particles, and magnetic fields that experience complicated
non-resonant temporal changes in the background plasma. This remains a very
active area of current research, and we present only some of the most basic
results here.

G.P. Zank, Transport Processes in Space Physics and Astrophysics, Lecture Notes
in Physics 877, DOI 10.1007/978-1-4614-8480-6__5,
© Springer Science+Business Media New York 2014
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5.1 Transport Equations for Non-relativistic Particles
Scattered by Plasma Fluctuations

5.1.1 The Focussed Transport Equation

Electromagnetic fluctuations in a flowing medium such as the solar wind act to
scatter particles, in pitch angle, gyrophase, or in energy. Although we do not
explicitly restrict our attention to any particular form of electromagnetic waves
in this subsection, we will implicitly consider particles scattered in pitch angle by
magnetic fluctuations – either Alfvén waves or convected magnetic fluctuations. In
this subsection, we derive a general equation for a gyrotropic distribution function
that describes non-relativistic particles scattering in a flowing medium. Such a
model was developed by Isenberg (1997) based on an approach by Skilling (1971)
to describe the propagation of pickup ions in the solar wind. Although particles
may eventually scatter towards isotropy in the frame of the medium, we not assume
an isotropic distribution in this subsection. Following Isenberg, we begin with
the Boltzmann equation for the distribution function f .x; v; t / of non-relativistic
particles in the inertial frame,1

�
@f

@t
C v � rf C F

m
� rvf D ıf

ıt

�

s

C S: (5.1)

The force term can be quite general, but we restrict our attention to F D q=c.E C
v � B/ i.e., the inertial frame electromagnetic force acting on a particle of charge
q, mass m, with c the speed of light. In the Boltzmann equation, S is a particle
source term. Of note is that (5.1) has been implicitly separated into mean and
fluctuating parts with the fluctuating components being treated as “scattering”
terms and relegated to the right-hand-side. The scattering term ıf=ıt/s acts to
stochastically scatter particles towards isotropy. In later subsections, we explicitly
calculate various forms of the scattering operator. Here, we focus on the left-hand-
side of (5.1).

Let us consider a frame of reference that propagates in the inertial “rest” frame
at a velocity U. Strictly speaking, this new frame comprises both the background
convection velocity and the “average” velocity of the scattering “centers” (Alfvén
waves, for example). Certainly in the supersonic solar wind, the convection velocity
is much larger than the velocity of the background scattering fluctuations and so
the additional velocity of the fluctuations is often neglected. Most importantly, a
velocity transformation U can be identified with the velocity of the background
conducting plasma, in which case the motional electric field E D �U � B=c exactly
cancels the electric field and leaves F D qv � B=c. It is important to recognize that
the scattering term in this frame conserves energy since all macroscopic electric
fields are transformed away. With no electric fields, particles can only scatter in
pitch angle. However, energy is not conserved in the “rest” frame and this has
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important consequences, as we discuss later in considering particle acceleration at
shock waves. Let us write

v D c C U ” c D v � U;

for which the following transformations hold,

@

@t
! @

@t
C @ci

@t

@

@ci
D @

@t
� @Ui

@t

@

@ci
I

@

@xj
! @

@xj
� @Ui

@xj

@

@ci
I @

@vi
! @

@ci
:

On applying these frame transformations to the inertial form of the Boltzmann
equation (5.1), we obtain an equation in mixed coordinates for the distribution
function f .x; c; t /,

@f

@t
C.Ui C ci /

@f

@xi
C
�
q

m
.c � B/i � @Ui

@t
� .Uj C cj /

@Ui

@xj

�
@f

@ci
D ıf

ıt

�

s

: (5.2)

The subscripts refer to vector components and the summation convention holds.
Let us now suppose that the particle gyroradius is much smaller than any

other spatial scales in the system and similarly that their gyroperiod is smaller
than other time scales. Thus, the particle distribution function can be regarded as
nearly gyrotropic, and so f .x; c; t / is essentially independent of gyrophase i.e.,
f .x; c; t / ' f .x; c; �; t/, where the particle pitch angle � 
 cos 
 D c�b=c and the
direction vector b 
 B=jBj is the unit vector along the large-scale magnetic field.
Since we are assuming gyrotropy of the distribution function, we may average (5.2)
over gyrophase. By gyrophase averaging, we neglect the action of perpendicular
drifts on the distribution function. It is convenient to introduce spherical coordinates
(
 
 pitch-angle, � 
 gyrophase, c 
 jcj),

cx D c sin 
 cos�I cy D c sin 
 sin�I cz D c cos 
 D c�I

c2 D c2x C c2y C c2z I cos 
 D cz

c
I � D cibi

c
I cDcx OexCcy OeyCcz Oez;

and � D �.x/ and � D �.x/. Consequently, we have the following transformations,

r D r C r� @

@�
C r� @

@�
I

@

@ci
D @c

@ci

@

@c
C @�

@ci

@

@�
C @�

@ci

@

@�

D ci

c

@

@c
C
�
bi

c
� �ci

c2

�
@

@�
C @�

@ci

@

@�
;
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which yields, on assuming that f .x; c; �; �; t/ D f .x; c; �; t/,

@f

@t
C .Ui C ci /

�
@f

@xi
C @�

@xi

@f

@�

�

C
�

˝"ijkcj bk � @Ui

@t
� .Uj C cj /

@Ui

@xj

�

�
�
ci

c

@f

@c
C
�
bi

c
� �ci

c2

�
@f

@�

�

D ıf

ıt

�

s

; (5.3)

where the gyrofrequency˝ D qjBj=m has been introduced and " is the Levi-Civita
tensor. We introduce an averaging operator for � such that "ijk D 1=2�

R 2�
0
Qd�

and average (5.3) term-by term. Thus, since

�
@f

@t

�

D @f

@t
I

�

Ui
@f

@xi

�

D Ui
@f

@xi
I

�

ci
@f

@xi

�

D hci i @f
@xi

;

and Oez D b, we obtain

hci i @f
@xi

D c�bi
@f

@xi
)
�

.Ui C ci /
@f

@xi

�

D .Ui C c�bi /
@f

@xi
:

Here we used

hci D chsin 
 cos� Oex C sin 
 sin� Oey C cos 
 Oezi D c�b;

since hsin�i D hcos�i D 0. Use of

�
@�

@xi

�

D
Dcj
c

E @bj
@xi

D �bj
@bj

@xi
;

and bj bj D 1, or bj @bj =@xi D 0, shows that

�

Ui
@�

@xi

@f

@�

�

D 0:

Now consider
�

ci
@�

@xi

�

D c
Dci cj
c2

E @bj
@xi

;

and the gyrophase averaged term hci cj =c2i term-by term. We have

�
c2x
c2

�

D 1 � �2
2

Oex Oex I
*
c2y

c2

+

D 1 � �2
2

Oey Oey I
*
c2z

c2

+

D �2 Oez Oez;
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and the cross terms hci cj =c2i D 0 for all i ¤ j , i; j D x; y; z. Recalling that
Oez Oez D bb we obtain

c
Dci cj
c2

E @bj
@xi

D c

�
1 � �2
2

Oex Oex C 1 � �2
2

Oey Oey C �2bb
�
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2
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2
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ıij � bibj

�C �2bb
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@bj

@xi
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1 � �2
2

ıij
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@xi
D c

1 � �2
2

@bi

@xi
;

since bj @bj =@xi D 0. Here we used Oex Oex C Oey Oey C Oez Oez D Oex Oex C Oey Oey C bb D I
or Oex Oex C Oey Oey D I � bb, where I is the identity matrix. Consequently, we have

�
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@xi

@f

@�

�
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2

@bi
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@f

@�
:

On using the results h Oej i D hcj =ci D �bj and h Oej Oei i D .1� �2/=2.ıij � bibj /C
�2bibj of before, we find
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and
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:

Finally, the Lorentz force terms yield

˝"ijk
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@f

@c
D 0I

�˝"ijk
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E
bk�

@f

@�
D 0;
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because hci cj =c2i D 0 for all i ¤ j and "ijk D 0 if and only if i ¤ j ¤ k. The
final term,

˝"ijk

Dcj
c

E
bibk

@f

@�
D ˝"ijkbibj bk�

@f

@�
D 0;

because "ijk D 0 if and only if i ¤ j ¤ k and
P

i

P
j

P
j "ijk D 0.

On using the above gyrophase-averaged results and collecting terms, we obtain
the reduced gyrophase-averaged transport equation
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The transport equation (5.4) is also known as the “focussed transport equation”
and this non-relativistic form, derived by Isenberg (1997), differs from the earlier
relativistically correct form derived by Skilling (1971) in that it contains the
convective derivative of U since Skilling assumed that U � c.

le Roux and Webb (2012) present a particularly nice discussion of the meaning
of the terms in the focussed transport equation (5.4). As discussed above, Eq. (5.4)
is in the solar wind flow frame, which is noninertial. Since the plasma flow is
non-uniform and non-stationary, scattered particles undergo velocity or momentum
changes as measured in the flow frame due to pseudoforces associated with the non-
uniform non-stationary nature of the flow. Recall from Chap. 2 that the gradient of
the flow velocity can be expressed as the sum of the flow divergence, the flow shear,
and the flow rotation, i.e.,
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where �ij and !ij denote the shear and rotation tensors of the flow respectively. On
expressing the flow gradient terms in the focussed transport equation (5.4) by the
general representation above, the method of characteristics shows that

1

c

�
@c

@t

�

D �1
3

@Ui

@xi
C 1 � 3�2

2
bibj .�ij C !ij / � �bi

c

dUi

dt

D �1
3

@Ui

@xi
C 1 � 3�2

2
bibj �ij � �bi

c

dUi

dt
(5.5)
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where dUi=dt is the convective derivative, and we recognize that the rotation tensor
is antisymmetric (!ij D �!ji ), so that the sum bibj!ij D 0. Thus, flow rotation
does not contribute to changes in particle speed. Similarly, we find that

�
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@t

�

D 1 � �2
2

�

c
@bi

@xi
� 3�bibj �ij � 2bi

c

dUi

dt

�

; (5.6)

and flow rotation does not contribute to changes in particle pitch-angle either.
Expressions (5.5) and (5.6) describe the gyrophase averaged rate of change of the
particle velocity c and pitch-angle �. If particle velocity or momentum is measured
in a nonuniform nonstationary plasma (noninertial) flow frame, the magnitude of
the particle velocity or momentum will be modified if the flow diverges (r � U),
experiences shear (�ij ), or rotation (!ij ), or accelerates (dUi=dt ), while the particle
pitch angle varies in response to flow shear, rotation, or acceleration. It is interesting
to note (recall the telegrapher equation discussion, Chap. 2) that the shear and
rotation tensor terms in Eq. (5.5) are multiplied by the term �.3�2 � 1/=2, which
is the second-order Legendre polynomial P2.�/, whereas the divergence of the
flow, r � U is multiplied by the zeroth-order Legendre polynomial P0 D 1, and
the acceleration term dUi=dt by the first-order Legendre polynomial P1.�/ D �.
For distributions f that are close to isotropic, this ordering of the terms associated
with the Legendre polynomials gives the order of the importance in terms of energy
change with respect to a physical process.

The flow divergence term r � U in Eq. (5.5) is nothing more than the well
known adiabatic momentum change term in the standard cosmic ray transport
equation that will be discussed below. Evidently, the divergence of the flow has
no effect on the particle pitch angle. Physically, the effect of the divergence of a
collisionless flow on energetic particles is consistent with the notion that particles
are coupled to the flow through their interaction (scattering) with electromagnetic
fields embedded in a highly conductive flow, but when the electromagnetic fields
are neglected the divergence of the flow still affects the particle momentum simply
because momentum is measured in the frame of a nonuniform plasma flow. As we
discuss in more detail below, the rapid (negative) divergence of a flow across a shock
wave leads to a convergence of the flow and the compression of electromagnetic
fields embedded in the flow. As shown explicitly in the formulation of the focused
transport equation, particles respond to the compression of electromagnetic fields
embedded in the flow, and experience adiabatic compression. Notice that all of the
effects due to a nonuniform nonstationary flow frame vanish if particle momentum is
measured in an inertial frame, but if one is interested in what happens to the random
component of the particle velocity at a shock, for example, noninertial effects must
be taken into account.

Most investigations are currently restricted to the 1D version of the focussed
transport equation. If one assumes for example a constant radial flow, such as the
solar wind, with U D U Or and a large-scale radial magnetic field pointing away from
the Sun, b D Or, then Eq. (5.4) simplifies to
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Exercises

1. By collecting all the terms associated with the gyrophase-averaging of (5.2),
derive the general form of the gyrophase-averaged transport equation (5.4).

2. By assuming a constant radial flow velocity for the solar wind and a radial
interplanetary magnetic field, derive the 1D focussed transport equation (5.7).

3. Assume that the one spatial dimensional gyrotropic distribution function can be
expressed as

f .r; c; �/ D f�.r; c/H.��/C fC.r; c/H.�/;

where H.x/ denotes the Heaviside step function and f˙ refer to anti-
sunward (fC)/sunward (f�) hemispherical distributions. By substituting
f D f�H.��/C fCH.�/ in the 1D focussed transport equation
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and integrating over � separately from �1 to 0 and then from 0 to 1, show that
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where � 
 �.� D 0/ gives the rate of scattering across � D 0. Note that the
form of the scattering term is of diffusion in pitch-angle, and this is discussed
below. The term � is the scattering frequency.

5.1.2 The Diffusive Transport Equation

The solution of the general gyrophase-averaged transport equation is a formidable
task for almost any physically interesting system so considerable effort has been
invested in trying to simplify (5.4) by means of several additional assumptions. Let
us assume that the scattering operator can be represented by a diffusion operator in
pitch-angle,
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; (5.8)

where � is a characteristic scattering frequency. The scattering term is discussed
further in more general terms in the following subsections.
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The dependence of the gyrophase-averaged particle distribution function f on
the pitch-angle � D cos 
 with � 2 Œ�1; 1� suggests a natural expansion in terms of
Legendre polynomials. The orthogonality properties of the complete set of Legendre
polynomials allow us to rewrite the focussed transport equation (5.4) as an infinite
set of partial differential equations in terms of the polynomial coefficients of the
expansion. To ensure tractability, one typically truncates the infinite set at a low
order, which is a form of closure. Accordingly, we expand the gyrophase-averaged
particle distribution function f as
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The orthogonality condition is given by
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We systematically project and expand each of the terms in (5.4) from left to right
using the Legendre polynomial Pm.�/ and the expansion for f .

The first (time-derivative) term becomes
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after using the orthogonality relation. Similarly, the second (convective) term
becomes
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The third term in (5.4) is a little more interesting in that we need to use the first of
the recurrence relations. Thus,
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On expanding f , we find
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The first term on the right-hand side contributes only when n D m C 1 and the
second term only when n D m � 1, so yielding

cbi

Z 1

�1
�Pm

@f

@xi
d� D cbi

2mC 3

2

mC 1

2mC 1

2

2mC 3

@fmC1
@xi

C cbi
2m � 1
2

m

2mC 1

2

2m � 1
@fm�1
@xi

D cbi
mC 1

2mC 1

@fmC1
@xi

C cbi
m

2mC 1

@fm�1
@xi

:

The third term can therefore be expressed as
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The fourth term in the focused transport equation (5.4) is
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The first term can be rewritten immediately as
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We need to use the first of the recurrence relations to infer
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On using this identity for the second term above, we obtain
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The first integral contributes only when n D m � 2, the second when n D m and
the last when n D mC 2, so yielding
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On assembling the various terms, we obtain for the fourth term of the focused
transport equation,

1 � 3�2
2

bibj
@Uj

@xi
c
@f

@c
W cbibj @Uj

@xi

1

2

@fm

@c
� vbibj

@Uj

@xi

3

2

.m � 1/m
.2mC 1/.2m � 1/

@fm�2
@c

� cbibj @Uj
@xi

3

2

�
.mC 1/2

2mC 3
C m2

2m � 1
�

1

2mC 1

@fm

@c

� vbibj
@Uj

@xi

3

2

.mC 2/.mC 1/

.2mC 3/.2mC 1/

@fmC2
@c

:



196 5 Charged Particle Transport in a Collisionless Magnetized Plasma

The fifth term of (5.4) can be expanded as
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On using the results of expressing the third term in terms of a Legendre polynomial
expansion, we have for the sixth term in (5.4)
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The computation of the seventh term in the focused transport equation is also
straightforward. We can immediately express
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Use of the second recursion relation above yields
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Consider now the eighth term in (5.4). We have
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The second of the recursion relations yields
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The first term contributes only for n D mC 2, the second for n D m, and the third
for n D m � 2, from which we obtain
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we can express term eight as
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We can utilize these results to express term nine in (5.4) as
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The results from evaluating the seventh term yield
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Finally, let us consider the specific form of the diffusion term in pitch-angle �,
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Since � is independent of �, we find
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On using the following relation,
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and since the integral only contributes for n D m, we have
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This completes the evaluation of each of the terms in (5.4).
By gathering the results above together, the complete transformed focused

transport equation (5.4) can now be expressed as an infinite set of partial differential
equations in the coefficients fn of the Legendre polynomials,
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fm: (5.9)

The infinite set of partial differential equations (5.9) is equivalent to the focused
transport equation (5.4) and therefore as challenging to solve. At each order of
the expansion, i.e., the pde for a Legendre coefficient of particular order, it is
clearly seen that the equation possesses coefficients of a higher order. This is
another expression of the closure problem. Closure is typically affected by simply
truncating the Legendre polynomial expansion at a finite number of coefficients.
This procedure is somewhat arbitrary and one formally needs to establish that the
truncation remains sufficiently close to the full solution. This is typically very
difficult in practice, and so is rarely done. An example of the subtleties that can
arise was discussed in Chap. 2, Sect. 2.8, where an even or an odd truncation of
the Legendre polynomial expansion of a simplified Boltzmann equation yielded
fundamentally different solutions, with the even truncation capturing the non-
propagating characteristic solution and the odd truncation missing that particular
mode.

Let us consider the simplest reduction of the set of equations (5.9) by truncating
the infinite set of equations at some arbitrary order with the hope that this does not
introduce any unphysical character into the reduced model. Typically, truncations
are made at the lowest order possible. For the f1 approximation (i.e. assume fn D
0 8 n � 2), we have, on setting m D 0,
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(5.10)

and on setting m D 1 and neglecting all terms with indices having i � 2, we find
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On rearranging the above expression, we obtain
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; (5.11)

where the f0 Legendre coefficients are expressed as source terms in the evaluation
of the next order Legendre coefficients f1. To solve Eq. (5.11) for f1 in terms
of the lower order Legendre coefficient f0, we make the further assumption that
the zeroth-order coefficient f0 is almost isotropic, implying that f1 � f0. The
next assumption that we impose is that � D 
�1 is large, i.e., rapid scattering
of the charged particles (which is consistent with the assumption that the particle
distribution is nearly isotropic), so that the term �f1 � O.f0/. Subject to these
assumptions, Eq. (5.11) can then be solved, yielding

�f1 ' �cbi
3
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3
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: (5.12)

Suppose first that the background flow possesses no large-scale accelerations or
gradients, i.e., Dui =Dt D 0, so that f1 can be expressed as a diffusion term,
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bi
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: (5.13)

For the case that DUi=Dt D 0, use of (5.13) in (5.10) yields
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where we introduced the diffusion coefficient

� D c2


3
:

The diffusion term bi�bj is a tensor comprising an isotropic part and an anisotropic
part,
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where the elements of the tensor are simply �ii D b2i �, �ij D bibj � for i ¤ j and
�ij D �ji . Use of the diffusion tensor K allows us to express the convective-diffusive
or advective-diffusive transport equation as

@f0

@t
C U � rf0 � c

3
r � U

@f0

@c
D r � .Krf0/ : (5.14)

Subject to the assumptions imposed in deriving Eq. (5.14), this is the standard
form of the transport equation for non-relativistic charged particles experiencing
scattering in a turbulent magnetized medium. The physical content of the transport
equation (5.14) is interesting when considered term-by-term. The second term
shows that the scattered particles that comprise the distribution f0 essentially co-
move with the background flow in which the “scatterers” are embedded. The third
term is an energy change term in response to the divergence of the background flow.
This is seen by considering
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where � D ln c. The characteristics for this equation are given by
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which yields

�.t/ � �.t0/ D �1
3

Z t
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r � Udt;

from some initial time t0 to a time t . If U is stationary, then the change in particle
velocity is given by

ln c.t/ � ln c.t0/

t � t0 D �1
3

r � U:

According as r � U is convergent (< 0) or divergent (> 0), particles will gain or
lose speed c in the flow. For example, if the particle distribution function upstream
of a region of a 1D decelerating flow (@U=@x < 0) is a power law f � c�q , then
the spectrum behind the decelerating flow will be shifted uniformly to the “right” in
which each speed ln c increased by an amount proportional to the velocity gradient.
Consequently, the energy of the particle distribution function will increase.

The diffusion term contains much of the physics of the magnetic field structure
as well as the scattering properties of the small scale fluctuating field. As a
consequence, the term K contains much more than simply diffusion. The isotropic



5.1 Transport Equations for Non-relativistic Particles Scattered by Plasma Fluctuations 203

part of the tensor K describes particle diffusion along (parallel) and perpendicular
to the magnetic field. The anisotropic terms are generally thought to describe the
collective drift of particles due to gradients and curvature in the magnetic field B
and magnitude jBj. However, in a sense shown below, the particle response to the
large-scale magnetic field geometry and gradients is present in all the elements of
the tensor K. This can be seen by expressing
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: (5.15)

The first term of (5.15) describes the isotropic and the anisotropic diffusive
propagation of charged particles. The coefficients of @f0=@xj in the second and third
terms of (5.15) are evidently velocity terms that are associated with variations in bi ,
i.e., these are drift terms associated either with gradients in B, jBj, or large-scale
curvature of B. Note that

@bi
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�
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�

D �B � rjBj
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is non-zero only if jBj varies spatially. This term is therefore related to the variation
in pitch-angle that a single particle experiences as it propagates along a magnetic
field that is converging or diverging. Consequently, the term r � b D L�1 defines
the so-called focusing length L, and the collective effect of focusing is therefore
embedded in the “diffusion” term of the transport equation (5.14). The terms
@bj =@xi when i ¤ j include the large-scale curvature in B since
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@xi
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:

The terms @bj =@xi also describe gradients in the components of B.
If we now include the DUi=Dt convective derivative that was neglected in

the solution of first-order correction f1, i.e., (5.12), the transport equation for f0
becomes
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:

Use of the definition � D c2
=3 and the diffusion tensor K allows us to express the
transport equation in the presence of large-scale flow gradients and accelerations as
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The convective transport equation (5.14) and its extensions to relativistic charged
particles is one of the most intensively studied equations in space physics and
astrophysics as it is the basis for almost all work on energetic charged particle
transport, ranging from galactic cosmic rays to solar energetic particles.

5.2 Transport Equation for Relativistic Charged Particles

5.2.1 Derivation of the Focussed Transport Equation

Consider now the extension of the previous two sections to include relativistic
charged particles propagating in a non-relativistic background plasma flow with
infinite conductivity.1 It is assumed from the outset that the charged particles expe-
rience resonant scattering due to turbulent fluctuations in the background magnetic
field. The fluctuations have typically been assumed to be magnetohydrodynamic
waves, typically Alfvén waves, which tends to ensure that the scattered particles are
trapped by the waves and stream with them. The waves define a frame of reference,
the “wave frame,” which propagates through the inertial or observer’s (rest) frame
and this is the frame in which the scattering is executed. In general, the wave frame
is non-inertial, since, if we assume that the waves propagate at the local Alfvén
speed VA and they experience convection at the background plasma flow velocity
U, the wave frame velocity, VA C U may vary with space and time. This frame as
expressed here also assumes that all the waves propagate uniformly in one direction
which may not be appropriate. To avoid these complications, we shall assume that
the background plasma flow speed sufficiently exceeds the Alfvén speed that we can
neglect VA. This is certainly true in the solar wind where VA ' 50 km/s compared
to the solar wind radial flow speed of 350–700 km/s.

The collisionless Vlasov equation that is valid for both relativistic and non-
relativistic particles may be written as

d

dt
f .x;p; t / 
 @f

@t
C vi

@f

@xi
C dpi

dt

@f

@pi
D 0; (5.17)

where f .x;p; t / is the distribution function in the rest frame and dp=dt is the force
on the charged relativistic particle. In the wave frame, scattering of the particles does
not change the momentum or energy of the particles, so we need to transform (5.17)
into the wave frame. The transformations that we need are listed in the footnote.2

1As noted earlier, the transport equation was derived by Skilling (1971). His treatment is very brief
and the development given here is guided by an excellent set of notes developed originally by Dr’s
G.M. Webb and J.A. le Roux, to whom I am indebted for sharing them with me.
2We summarize the various Lorentz transformations that are needed in the derivation of the
focussed transport equation. A four-vector has three spatial components and one time component,
.x0; x1; x2; x3/ D .x0; x

a/ D x˛ , where small Roman superscripts denote spatial coordinates
of the four-vector and Greek superscripts denote all four components. The length of a four-
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We need to derive

d

dt 0
f .x0;p0; t 0/ D 0;

where the distribution function and the variables correspond to the wave frame. Nev-
ertheless, we will observe the cosmic rays in the rest or observer’s frame, and this
will therefore introduce a set of mixed coordinates as was done above. Exploiting
the Lorentz invariance of the distribution function, f .x;p; t / D f .x0;p0; t 0/, we
have

vector is x˛x˛ D x21 C x22 C x23 � x20 D xaxa � x20 , and is invariant between coordinate
systems. The contraction of any two four-vectors is invariant between coordinate systems. The
Lorentz transformation matrix (see Jackson 1975, Sect. 11.7) enables one to transform one tensor
to another. When the Lorentz matrix operates on a four-vector, it yields

x0

0 D � .x0 � ˇaxa/ I

xa0 D xa C ˇa
�
ˇbxb

ˇ2
.� � 1/� �x0

�

I � D 1
p
1� U 2=c2

I ˇa D U a=c;

where the transformation of the four vector is between reference frames in which the primed
variable has velocity U a relative to the non-primed variable. c denotes the speed of light. The
corresponding inverse Lorentz matrix can of course be used. Typical four vectors are time-space
.ct; xa/ D x˛ , and the energy and momentum of a particle .E=c; pa/ D .mc; pa/ D �m0.c; va/,
where m0 is the rest mass of the particle. Since m0 is constant, �.c; va/ is a four-vector. Defining
the proper time of a particle 
 of a particle as dt=d
 D � allows the four-velocity to be expressed
as dx˛=d
 . The various transformations that we need are as follows:
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Note that if jUj=c 	 1,

� D .1� U 2=c2/�1=2 ' 1C .U 2=2c/2;

so that � ' 1 is valid to the first order in U=c.
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d

dt
f .x;p; t /
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dt 0
D 0:

The Lorentz transformation for time between the observer and wave frames yields
to first-order in jUj=c

t ' t 0 C x0 � U
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:

Consequently, we have
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df
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.x;p; t / D 0:

We now need to introduce a transformation so that the particle momentum is
measured in the wave frame. This requires that the various partial derivatives in
the Vlasov equation are transformed from the observer’s frame to the wave frame
i.e., .x;p; t / 7! .x;p0; t /. This requires the use of the inverse Lorentz transformation
for particle momentum (Footnote), which to first order in jUj=c yields � ' 1 and

p0 D p �m0U;

where m0 D � 0m0 and � 0 D 1=
p
1 � v02=c2 for the relativistic particle in the

observer’s frame. Considering the time derivative yields

@

@t
D @

@t
C @p0

i

@t

@

@p0
i

D @

@t
C @

@t
.pi �m0Ui/

@

@p0
i

D @

@t
�m0 @Ui

@t

@

@p0
i

:

The spatial derivative transforms as
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Finally, instead of the inverse transform, we use p0 D p �mU to obtain
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Introducing the basis vector for spherical coordinates allows us to express
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we have
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We then obtain
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On retaining only terms of O.U=c/, we obtain
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Consider now the convective term,
�
1C v0 � U=c2

�
vi @f =@xi . To the first order in

U=c, using the Lorentz transformation for the velocity, and � ' 1 gives
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This then yields
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Consider now the momentum change term
�
1C v0 � U=c2

�
.dpi=dt/@f=@pi . We

assume that the momentum change is due to electromagnetic fields only. Thus, we
have the Lorentz force

dpi

dt
D q

�
Ei C "ijkvjBk

�
;

where q is the particle charge, B the external magnetic field, E the electric field, and
"ijk is the Levi-Civita tensor. The first order Lorentz transformation for E is simply

E0 ' E C U � B ” E ' E0 � U � B;

which yields
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E 0
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To address the transformation of the velocity, the Lorentz transformation yields � '
1 and
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at O.U=v/, from which we find
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so that
�

1C v0 � U
c2

�
dpi

dt

@f

@pi
D q

�

1C v0 � U
c2

�

E 0
i

@f

@pi

C q

�

1C v0 � U
c2

��

1 � v � U
c2

�

"ijkv0
jBk

@f

@pi
:

The Lorentz transformation for time and its inverse yield
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from which we obtain
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in the limit U=c � 1. We may therefore derive
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:

Now consider the Lorentz transformation of the magnetic field. To first order, we
have

B0 D B � 1

c2
U � E;

but since E D �U � B, B0 D B C U � .U � B/=c2, this implies that

B0 D B;
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at this order. This, together with
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allows us to write
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after neglecting the UiUj =c
2 term in the second line. The term q.v0 �
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�

1C v0 � U
c2

�
dpi

dt

@f

@pi
'
�

q
v0 � U
c2

E 0
i C dp0

i

dt

�
@f

@p0
i

;

where
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i
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D q

�
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i C "ijkv0

jB
0
k

�
:

On combining the results above, we obtain the Vlasov equation in mixed coordi-
nates,
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i
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i

D 0; (5.18)
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with f .x;p; t /. However, since the coordinates .x;p0; t / are in the mixed coordinate
system, we need to introduce the transformation f .x;p; t / 7! f 0.x;p0; t /. Recall
that

f .x;p; t /d 3xd3p D f 0.x;p0; t /d 3x0d3p0;

and that d3x D �d3x0. Consider the transformation of the volume element in
momentum space. On using p D p0 C m0U, dm0=dp D p=.m0c2/, and dp=dpi D
pi=p, we have

d3p D dpxdpydpz

D
�

dp0
x C Ux

p0

m0c2
dp0

��
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U 2
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' dp0
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�

1C v0 � U
c2

�

:

Thus, we have the transformation

f .x;p; t / D f 0.x;p0; t /
� .1C v0 � U=c2/

;

which to first order in U=c, � ' 1 yields

f .x;p; t / D f 0.x;p0; t /
.1C v0 � U=c2/


 f 00.x;p0; t /:

On setting f .x;p; t / D f 00.x;p0; t / in (5.18), we have the final form of the
transformed equation,
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Fig. 5.1 The coordinates for
a particle gyrating about a
mean magnetic field B
oriented along the z-axis. The
particle momentum is given
by the vector p, the
pitch-angle by 
 , and the
gyrophase by �. The
directional vector
b � B=jBj D e3

In deriving (5.19), we used
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Just as we did in the derivation of the focussed transport equation for non-
relativistic particles, we shall assume that the particle distribution function is nearly
gyrotropic, making f .x; v; t / ' f .x; v; �; t/ where the particle pitch angle is
� 
 cos 
 as before. For the sake of notational convenience, we henceforth drop
the “prime” on the variables and distribution function. The averaging procedure
proceeds in much the same way as before. For completeness, we provide some of
the details in the derivation although using a slightly more general notation. The
local geometry of a charged particle gyrating about the mean magnetic field B is
illustrated in Fig. 5.1. The coordinates .x1; x2; x3/ refer to a magnetic field system
and e3 D b 
 B=jBj. Since the magnetic field is not assumed to be uniform, the
unit vectors .e1; e2; e3 D b/ are functions of x. As before, � D cos 
 D ep � b.

Recall that the momentum can be expressed in spherical coordinates as
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@p
D ep
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p sin 
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where

p D p .sin 
 cos�e1 C sin 
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b/ I
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As before, we require the following integrals,
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after using hcos2 �i D hsin2 �i D 1=2.
Consider the time derivative
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On considering the convective term,
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;

we derive the gyrophase averaged expression
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On expressing
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we may consider
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We can similarly evaluate
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Finally,
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since .p � B/ � b D 0 and .p � B/ � ep D 0.
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On combining the results above, we obtain the focussed transport equation or,
equivalently, the Boltzmann equation for a gyrotropic particle distribution,
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: (5.20)

The righthand term is the scattering term, due charged particles scattering in pitch-
angle due to the stochastically fluctuating magnetic field. Certainly for parallel
propagation, the scattering fluctuations are typically assumed to be Alfvén waves.
The scattering of charged particles conserves particle energy in the wave frame. In
the transformation from the observer’s frame (the rest frame) to the wave frame,
the macroscopic electric fields are transformed away by the background velocity
U because the plasma is infinitely conductive. Electric fields associated with the
waves disappear in a frame moving with the waves. In the absence of electric
fields, charged particles can only experience scattering in pitch angle. Energy is
not, however, conserved in the observer’s frame.

On assuming that dU=dt D 0 and neglecting terms O.U=c/, we recover the
usual form of the focussed transport equation,
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: (5.21)

The focussed transport equation (5.21) can be reduced to the convective-diffusive
equation if the distribution function f .x; p; �; t/ ' f .x; p; t/ i.e., if the scattering
experienced by the particle is sufficiently strong that the distribution is nearly
isotropic. The analysis of Sect. 2 carries over directly with “c” being replaced by
“p”, and the general convective-diffusive transport equation is given by

@f

@t
C U � rf � p

3
r � U

@f

@p
D r .Krf / : (5.22)

This is the standard form of the transport equation for relativistic charged particles
experiencing scattering in a non-relativistic turbulent plasma.
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Exercises

1. Derive the following averaging relations:
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2. Complete the derivation of
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5.3 The Magnetic Correlation Tensor

As will be discussed in detail below, the magnetic correlation tensor plays a central
role in determining the transport properties of particles experiencing pitch-angle
scattering by turbulent magnetic field fluctuations. A very detailed discussion of
different forms of the magnetic correlation tensor has been presented by Shalchi
(2009).3 The general form of the two-point, two-time magnetic correlation tensor
has the form

Rij .r; t; r0; t0/ D hıBi .r; t /; ıBj .r0; t0/i;

where r 0 denotes a different spatial location and h�i an ensemble average. It is
convenient to consider the correlation tensor using a Fourier representation

3See also Tautz and Lerche (2011).
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ıBi .r; t / D
Z
ıBi .k; t /eik�rd3k;

from which we find

Rij .r; t; r0; t0/ D
Z
d3k

Z
d3k0 ˝ıBi .k; t /ıBj .k0; t0/

˛
eik�rCik0�r0

: (5.23)

As is typically assumed, we suppose that the magnetic turbulence is homogeneous,
so that the correlation function depends only on the separation jr � r0j between two
points. Then we can express

˝
ıBi .k; t /; ıBj .k0; t0/

˛
as
˝
ıBi .k; t /; ıBj .k0; t0/

˛
ı.k C

k0/, which allows us to integrate (5.23) as

Rij D
Z
d3k

˝
ıBi .k; t /; ıBj .�k; t0/

˛
eik�.r�r0/:

From the definition of the Fourier transform, ıBj .�k/ D ıB�
j .k/ where � denotes

the complex conjugate. This allows us to introduce the usual definition of the
correlation tensor,

Pij .k; t; t0/ D
D
ıBi .k; t /ıB�

j .k; t0/
E
;

and the correlation tensor Pij .k; t; t0/ is expressed in wave number space. The
correlation tensor (5.23) then reduces to

Rij .r; t; r0; t0/ D
Z
d3kPij .k; t; t0/eik�.r�r0/:

On setting t0 D 0 and r0 D 0, we have

Pij .k; t / D hıBi .k; t /ıB�
j .k; 0/i;

with

Rij .r; t / D
Z
d3kPij .k; t /eik�r: (5.24)

Although we restrict ourselves to stationary turbulence, we note that the inclusion of
temporal effects in the correlation tensor is typically accomplished by assuming that
the correlation tensor has a separable form in the spatial and temporal components,

Pij .k; t / D Pij .k; 0/� .k; t /;

where � .k; t / is a dynamical correlation function and Pij .k; 0/ 
 Pij .k/ is the
magnetostatic correlation tensor.
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For completeness, we first consider isotropic turbulence. The general form of an
isotropic rank-2 tensor is4

Pij .k/ D A.k/ıij C B.k/kikj C C.k/
X

k

"ijkkk:

Recall that "ijk is the Levi-Civita or unit alternating tensor and has values "ijk D 0

if any of i , j , and k are repeated, "ijk D C1 or �1 when i , j , and k are all different
and in cyclic or acyclic order respectively.

Since r � ıB D 0,

X

i

ki ıBi .k/ D 0;

which yields

X

i;j

hkiıBikj ıB�
j i D

X

i;j

kikjPij D 0:

If we substitute the general form Pij of an isotropic rank-2 tensor, it therefore
follows immediately that for magnetic turbulence
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X

i;j

kikj ıij C B.k/
X

i;j

k2i k
2
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X

i;j;k

"ijkkikj kk

D A.k/k2 C B.k/k4;

and hence that

B.k/ D �A.k/
k2

:

The general form of the magnetic isotropic tensor is therefore

Pij .k/ D A.k/

�

ıij � kikj

k2

�

C C.k/
X

k

"ijkkk:

Since

Pij .k/ D hıBiıB�
j i D hıB�

i ıBj i� D hıBj ıB�
i i� D P �

j i .k/;

4Batchelor (1953)
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we have

P �
j i D A�.k/
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"ijkkk;

after using "j ik D �"ijk . We therefore have A.k/ D A�.k/, i.e., A.k/ is real, and
C.k/ D �C �.k/, implying that C.k/ is imaginary. Quite generally, we can express

C.k/ D iA.k/
�.k/

k
;

to obtain

Pij .k/ D A.k/

"

ıij � kikj

k2
C i�.k/

X

k

"ijk
kk

k

#

; (5.25)

where A.k/ and �.k/ are real, and �.k/ is known as the magnetic helicity.
Appropriate models for A.k/ and �.k/ must be given.

Let us reconsider now the correlation tensor in the presence of magnetic
turbulence that is axisymmetric with respect to a preferred direction; typically the
z-axis along which the uniform mean magnetic field is assumed to be oriented. In
this case, it can be shown (not done here, see Matthaeus and Smith (1981)) that the
isotropic form of the correlation tensor also holds for axisymmetric turbulence,

Pij .k/ D A.kk; k?/
"

ıij � kikj

k2
C i�.kk; k?/

X

k

"ijk
kk

k

#

:

In most applications to cosmic ray or energetic particle transport, the magnetic
helicity term is neglected, as is the parallel component of the turbulent magnetic
field ıBz. In this case, the correlation tensor reduces to

Pij .k/ D A.kk; k?/
�

ıij � kikj

k2

�

; (5.26)

where i; j D x; y and Piz D 0 D Pzj .
To complete the correlation tensor for use in a transport equation describing par-

ticle scattering in a turbulent magnetic field, we need to specify both the geometry
of the magnetic turbulence and the spectrum of the magnetic field fluctuations. This
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will allow us to model the function A.kk; k?/. Three possible geometries, besides
the isotropic case discussed already, are possible in the interplanetary (and possibly
interstellar) environment. The first is the slab model, which is a one-dimensional
model in that the turbulent magnetic field depends only on the z-coordinate

ıBslab
i .r/ D ıBslab

i .z/;

allowing us to express the function

Aslab.kk; k?/ D gslab.kk/
ı.k?/
k?

:

For the slab model, the wave vectors are parallel to the mean magnetic field, i.e.,
k k B0.

Alternatively, we can consider a 2D or perpendicular turbulence model in which
the turbulent field is a function of the perpendicular coordinates .x; y/ only, i.e.,

ıB2D
i .r/ D ıB2D

i .x; y/;

so that

A2D.kk; k?/ D g2D.k?/
ı.kk/
k?

:

In this case, the wave vectors are orthogonal to the mean magnetic field, k ? B0,
and therefore lie in a 2D plane perpendicular to the mean field.

Finally, one can construct a two-component model that corresponds to a superpo-
sition of the slab and 2D models. This model is quasi-3D and

ıB
comp
i .r/ D ıB2D

i .x; y/C ıBslab
i .z/:

Because we have

hıBslab
i .z/ıB�;2D

i .x; y/i D 0;

the correlation tensor has the form

P
comp
ij .k/ D P slab

ij .k/C P 2D
ij .k/:

In addition to the underlying geometry of the assumed interplanetary or inter-
stellar turbulence, we need to specify the wave number dependence of A.kk; k?/,
i.e., the wave number spectrum. For the slab model, this requires that we prescribe
gslab.kk/ and similarly g2D.k?/ for the 2D model. A typical spectrum observed in
the solar wind has three distinct regions: (i) an energy containing range at small
wave numbers (i.e., large scales), and is typically of the form k�1. The energy
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range 
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k 

Fig. 5.2 Schematic of the
wave number spectrum
observed typically in the solar
wind, illustrating the energy
containing range, the inertial
range, and the dissipation
range. The bendover scale
`�1 and the dissipation scale
kd are identified

range is defined by a bendover or turnover scale such that gslab=2D.kslab=2D �
`�1
slab=2D/ D energy range of the spectrum, depending on whether the turbulence

is of the slab or 2D kind. (ii) At larger wave number scales, energy in turbulent
fluctuations is transferred locally from larger to smaller scales in a self-similar
manner. This part of the spectrum is called the inertial range and typically has the
form k�5=3, which is the Kolmogorov form of the spectrum.5 For the inertial range,
we introduce a dissipation wave number kd;slab=2D and defined the spectrum by
gslab=2D.`�1

slab=2D � kslab=2D � kd;slab=2D/ D inertial range of the spectrum. (iii)
Finally, for large wave numbers or small scales, the turbulence loses energy through
dissipation, and so this part of the spectrum is called the dissipation range, and is
much steeper than the rest of the spectrum, typically k�3. The dissipation range may
be defined as gslab=2D.kd;slab=2D � kslab=2D/ D dissipation range of the spectrum
(see Fig. 5.2 for a schematic illustration and Fig. 5.3 for several examples observed
in the solar wind).

In most studies of energetic particle transport, the dissipation range plays very
little role and is therefore neglected typically. The energy and inertial ranges are
however critical in determining particle transport properties and a useful analytic
form of the wave number spectrum for magnetic (and other) fluctuations is

gi .ki / � �
1C k2i `

2
i

���
; i 
 slab or 2D:

This form of the spectrum contains both the energy range (modeled as a constant)
and an inertial range with slope k�2� defined by a bendover scale `i .

An important quantity used to characterize turbulence and closely related to the
bendover scale is the correlation length, defined by the following integral,

`c;ij

D
ıB2

j

E
D
Z 1

0

Rjj .r; 0/dri :

The correlation length represents the characteristic length scale for the spatial
decorrelation of turbulence. Hence, `c;ij ıB2

j is simply the area under the correlation
function Rii . Clearly, the correlation length depends intimately on the nature of the
turbulence and wave number spectrum through the correlation function.

5Kolmogorov (1941).
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Fig. 5.3 Example of spectra upstream and downstream of a perpendicular interplanetary shock
wave (Zank et al. 2006)

Consider now the correlation function for slab turbulence, assuming that
� .r; t / D 1, i.e., magnetostatic turbulence. Turbulent magnetic fluctuations vary
only along the direction of the mean magnetic field z, so

Rslabij D hıBi .z/ıB�
j .0/i;

assuming z.0/ D 0 because of homogeneous turbulence. On using the form of the
axisymmetric magnetic correlation tensor, and the results from the geometric form
of A.kk; k?/, we find
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Pij .k/ D gslab.kk/
ı.k?/
k?

�

ıij � kikj

k2

�

D gslab.kk/
ı.k?/
k?

ıij if i; j D x; y;

and Piz D 0 D Pzj . If we assume the general form of the turbulence spectrum
above, we can express gslab as

gslab.kk/ D C.�/

2�
`slab

˝
ıB2

slab

˛ �
1C k2k`

2
slab

���
; (5.27)

where the normalization constant has to be determined. Thus, using cylindrical
coordinates kx D k? cos 
 , ky D k? sin 
 , kz D kk to express the wave vector,
we find

˝
ıB2

slab

˛ D ˝
ıB2

x

˛C
D
ıB2

y

E
D Rxx.0/CRyy.0/ D

Z
d3k

	
Pxx.k/C Pyy.k/




D 2

Z 2�

0

Z 1

0

Z 1

�1
gslab.kk/

ı.k?/
k?

k?d
dk?dkk

D 8�

Z 1

0

gslab.kk/dkk:

On using (5.27), we find

C�1.�/ D 4`slab

Z 1

0

�
1C k2k`

2
slab

���
dkk;

D 2

Z 1

0

t�1=2.1 � t /��dt;
after using the change of variables t D k2k`

2
slab . This integral is the beta function

(related to the gamma function � .x/) defined byB.x; y/ 
 R1
0
tx�1=.1Ct /xCydt ,

x > 0, y > 0, andB.x; y/ D � .x/� .y/=� .xCy/. Thus, setting x D 1
2
, y D �� 1

2

yields

C.�/ D 1

2
p
�

� .�/

� .� � 1=2/ ;

since � .1=2/ D p
� .

The slab correlation function can now be calculated using (5.24)

Rslabxx .z/ D hıBx.z/ıB�
x .0/i D

Z
d3kP slab

xx cos.kkz/

D 4�

Z 1

0

gslab.kk/ cos.kkz/dkk

D 2C.�/
˝
ıB2

slab

˛
Z 1

0

.1C x2/�� cos.ax/dx;
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where x 
 kk`slab and a 
 z=`slab . The last integral is of a standard tabulated form

Z 1

0

.1C x2/�� cos.ax/dx D
p
�

� .�/

�
2

a

�1=2��
K��1=2.a/;

where Kˇ.z/ is the modified Bessel function of imaginary argument. The perpen-
dicular correlation function R? D Rxx CRyy can therefore be expressed as

Rslab? D 2
˝
ıB2

slab

˛

� .� � 1=2/
�
2`slab

z

�1=2��
K��1=2

�
z

`slab

�

: (5.28)

Shalchi provides two useful asymptotic forms6 for the slab correlation function in
the limits z � `slab and z � `slab , respectively

K��1=2.z � `slab/ ' 1

2
� .� � 1=2/

�
2`slab

z

���1=2
;

H) Rslab? .z � `slab/ D ˝
ıB2

slab

˛
if � > 1=2I

K��1=2.z � `slab/ '
s
�`slab

2z
e�z=`slab ;

H) Rslab? .z � `slab/ D
p
�

� .� � 1=2/
˝
ıB2

slab

˛
�
2`slab

z

�1��
e�z=`slab :

The bendover scale `slab is the characteristic length scale for the spatial decorre-
lation of the turbulence for the exponentially decaying correlation function in the
limit z � `slab .

The slab correlation length can also be computed, and this illustrates the
relationship between `c;slab and the bendover scale length `slab . Recall from the
definition of `c;slab

`c;slab
˝
ıB2

slab

˛ D
Z 1

0

Rslab? .z/d z

D 2�

Z 1

�1
dkkgslab.kk/

Z 1

�1
d zeikk

z

D .2�/2
Z 1

�1
dkkgslab.kk/ı.kk/

D .2�/2gslab.0/ D 2�C.�/`slab
˝
ıB2

slab

˛
;

6Useful limits of these and many other related functions are tabulated in Abramowitz and Stegun
(1974). For this case, A. Shalchi used the formulae (9.6.9) and (9.7.2).
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since
R
d zeikk

z D 2�ı.kk/. Thus the slab correlation length and the bendover scale
are related via

`c;slab D 2�C.�/`slab;

which if we assume a Kolmogorov power law for the inertial range, � D 5=6, we
have C.5=6/ D 0:1188 and hence `c;slab ' 0:75`slab .

The 2D magnetostatic correlation function is a little more laborious to compute.
Since ıBi .r/ D ıBi .x; y/, the 2D correlation tensor is given by

R2Dij .x; y/ D hıBi .x; y/ıBj .0; 0/i;

or

Rxx.x; y/ D
Z
d3kPxx.k/eik�r D

Z
d3kPxx.k/eikxxCikyy;

and we have

P 2D
ij .k/ D g2D.k?/

ı.kk/
k?

�

ıij � kikj

k2

�

if i; j D x; y ;

or D 0 if i or j D z.

For the wave spectrum, we assume the same normalized form as for the slab case
except that we introduce the 2D counterparts `2D and

˝
ıB2

2D

˛
,

g2D.k?/ D C.�/

2�
`2D

˝
ıB2

2D

˛ �
1C k2?`22D

���
:

On introducing cylindrical coordinates for the wave vector and position

kx D k? cos	; ky D k? sin	 I
x D r cos˚; y D r sin˚;

we find

R2Dxx .x; y/ D
Z 2�

0

Z 1

0

Z 1

�1
g2D.k?/

ı.kk/
k?

 

1 � k2?
k2

cos2 	

!

eik�rk?d	dk?dkk

D
Z 1

0
dk?g2D.k?/

Z 2�

0
d	 sin2 	 exp Œik?r.cos˚ cos	C sin˚ sin	/�

D
Z 1

0
dk?g2D.k?/

Z 2�

0
d	 sin2 	 exp Œik?r cos.˚ � 	/� :
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A standard simplification of these integrals makes use of a series expansion in terms
of Bessel functions,

eix sin˛ D
1X

nD�1
Jn.x/e

in˛; eix cos˛ D
1X

nD�1
Jn.x/e

in.˛C�=2/;

which allows us to obtain

R2Dxx .x; y/ D
Z 1

0

dk?g2D.k?/
1X

nD�1
Jn.k?r/

Z 2�

0

d	 sin2 	e�in	 ein.˚C�=2/:

The corresponding expression for Ryy is given by

R2Dyy .x; y/ D
Z 1

0

dk?g2D.k?/
1X

nD�1
Jn.k?r/

Z 2�

0

d	 cos2 	e�in	 ein.˚C�=2/;

meaning that

R2D? .x; y/ D
Z 1

0

dk?g2D.k?/
1X

nD�1
Jn.k?r/

Z 2�

0

d	e�in	 ein.˚C�=2/:

Since

Z 2�

0

d	e˙in	 D 2�ın0;

the 2D perpendicular correlation function reduces to

R2D? .x; y/ D 2�

Z 1

0

dk?g2D.k?/J0.k?r/;

which can be further expressed as (using as before x 
 k?`2D and a 
 r=`2D)

R2D? .r/ D 4C.�/
˝
ıB2

2D

˛
Z 1

0

.1C x2/��J0.ax/dx: (5.29)

As before, it is instructive to consider the limits a D 0 and a ! 1. The former
limit yields (J0.0/ D 1)

Z 1

0

.1C x2/��dx D .4C.�//�1 ) R2D? .r D 0/ D ˝
ıB2

2D

˛
:
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The latter limit yields (
R1
0
J0.y/dy D 1)

Z 1

0

.1C x2/��J0.ax/dx D 1

a

Z 1

0

�

1C y2

a2

���
J0.y/dy

' 1

a

Z 1

0

J0.y/dy D 1

a
I

) R2D? .r � `2D/ D 4C.�/
˝
ıB2

2D

˛ `2D
r
:

Note that the spatial decorrelation length for the turbulence is determined by the 2D
bendover scale `2D . Notice too that although the same forms of the wave number
spectrum were used for both the slab and 2D cases, the correlation functions are
nonetheless different, with the 2D correlation function decaying more slowly with
increasing distance compared to the slab case (which falls off exponentially).

As before, we can relate the 2D correlation length `c;2D to the bendover scale
`2D . In this case, we need to introduce a minimum wave number, xmin 
 `2D=L2D ,
to avoid a divergent integral,

`c;2D D 1
˝
ıB2

2D

˛
Z 1

0

R?.r/dr

D 4C.�/

Z 1

xmin

dx.1C x2/��
Z 1

0

drJ0

�
xr

`2D

�

D 4C.�/`2D

Z 1

xmin

dx

x
.1C x2/��

' 4C.�/`2D

�Z 1

xmin

dx

x
C
Z 1

1

x�2��1dx
�

' 4C.�/`2D

�
1

2�
C ln

L2D

`2D

�

:

The wave spectrum used here is normalized correctly only if L2D � `2D , and in
the limit of an infinitely large box, L2D ! 1, the correlation length is infinite.

5.4 Quasi-linear Transport Theory of Charged Particle
Transport: Derivation of the Scattering Tensor

We have so far prescribed a very simple diffusion in pitch-angle expression to
describe the scattering of particles by in situ magnetic fluctuations. In this and the
next section, we derive expressions that describe the scattering of energetic particles
in low-frequency magnetic turbulence.
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Since we consider particles that can have high energies, we begin with the
momentum form of the Vlasov or collisionless Boltzmann equation

@f

@t
C p
m

� rf C q

�

E C p � B
m

�

� @f
@p

D 0; (5.30)

for particles of mass m and charge q. Following le Roux et al. (2004)7 we use a
quasi-linear approach to derive a Fokker-Planck kinetic transport equation for the
diffusion of charged particles experiencing scattering in pitch-angle and momentum
space due to the presence of Alfvénic/slab and quasi-2D turbulence in the solar
wind. Quasi-linear theory proceeds essentially by assuming that charged particle
gyro-orbits are only weakly perturbed by electromagnetic fluctuations. Typically,
there are three ways to proceed. One can proceed from the formalism discussed
in the derivation of the Fokker-Planck equation from the Chapman-Kolmogorov
equation, assuming a Markovian process, and evaluate the diffusion coefficients
directly. A second approach, which we follow here, is to directly expand Eq. (5.30)
to determine the diffusion coefficients. A third approach is to work directly from
the Newton-Lorentz equations for particle motion in a fluctuating electromagnetic
field and directly compute momentum and spatial diffusion coefficients from the
Taylor-Green-Kubo (TGK) forms,8

D��.�/ 

Z 1

0

dth P�.t/ P�.t/iI

Dij .�/ 

Z 1

0

dthvi .t /vj .t/i;

where � is the cosine of the particle pitch angle and v is the particle velocity.
Several assumptions are made explicitly to ensure the validity of the quasi-

linear approximation. The first is that the electromagnetic fluctuations are of small
amplitude. This ensures that particles follow approximately undisturbed helical
orbits on a particle correlation time 
pc , which is the characteristic time for a
particle to gyrate on an undisturbed trajectory before being disturbed by incoherent
or random fluctuations. This obviously means that the particle correlation time is
much less than the characteristic time scale for particle pitch-angle scattering 
�
i.e., 
pc � 
�. The time scale over which particle orbits are significantly distorted
by pitch-angle scattering is therefore much longer than the particle correlation time
scale on which a coherent helical orbit is maintained.

In Eq. (5.30), we may expand the electromagnetic fields, E and B, the flow
velocity u, and the distribution f into mean and fluctuating parts using a mean field
decomposition, i.e., a field or scalar Q is may be decomposed as Q D Q0 C ıQ

7See also le Roux and Webb (2007).
8See Shalchi (2009) for a general discussion of this approach.
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such that the ensemble average hQi D Q0 and hıQi D 0. It does not necessarily
follow that ıQ � Q0, although in quasi-linear theory, this assumption is made to
eliminate second-order and higher correlations. Hence,

E D E0 C ıE; hıEi D 0I
B D B0 C ıB; hıBi D 0I
u D u0 C ıu; hıui D 0I
f D f0 C ıf; hıf i D 0:

The fields are assumed to vary smoothly on the large scale L, and randomly varying
fluctuations occur on the smaller correlation length scale `c � L. The power
spectrum of fluctuations ranges from scales on the order of the correlation length to
smaller than the particle gyroradius rg . In the analysis here, we assume an infinitely
extended wave number power spectrum for simplicity, rather than include the details
of the dissipation range part of the spectrum. The total electric field, in the MHD
approximation, is

E D �u � B;

where u and B are measured in the observer’s frame. Applying the small amplitude
assumption to the mean field decomposition of the electric field E yields

E0 D �u0 � B0; and ıE D �u0 � ıB � ıu � B0;

after neglecting quadratically small terms (ıu � u0, and ıB � B0). We will neglect
the induced turbulent electric field ıE (although see le Roux et al. for the case where
this term is retained). We will make the assumption that the particle distribution is
co-moving with the background plasma frame, so that the mean motional electric
field term is zero, E0 D 0.

The mean field decomposition above is substituted into the collisionless Boltz-
mann equation (5.30). The ensemble averaged form of this equation is then
subtracted from the full, unaveraged transport equation (5.30), yielding a transport
equation for the rapidly fluctuating variable ıf . This equation contains the differ-
ences of second-order terms and their corresponding ensemble averages. Since we
assume from the outset that ıf � f0, ıB � B0, the quadratic terms are small and
can be neglected (Exercise). The linearized equation for the correction ıf is

@

@t
ıf C p

m
� rıf C .p �˝/ � @ıf

@p
D �q p � ıB

m
� @f0
@p
; (5.31)

where ˝ D qB0=m is the particle gyrofrequency. The corresponding mean-field
equation for the distribution function f0 is given by

@f0

@t
C p
m

� rf0 C .p �˝/ � @f0
@p

D �q
�

p � ıB
m

� @ıf
@p

�

; (5.32)
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where the right-hand nonlinear term describes the perturbing effect of the fluctuating
magnetic field on the scattered particle distribution. As we illustrate below, this term
introduces a diffusion coefficient in pitch-angle space. The closure of (5.32) can be
affected by solving the quasi-linear equation (5.31) for ıf , and then evaluating the
ensemble-averaged term in (5.32).

Consider a homogeneous, infinitely extended plasma system with Cartesian
coordinates .x; y; z/with the z-axis aligned with the mean magnetic field B0 D B0 Oz.
Since the turbulence is comprised of slab turbulence with wave vectors along
the mean magnetic field and 2D turbulence with fluctuations and wave vectors
transverse to B0, we have

ıB.x; y; z/ D ıBx.x; y/Ox C ıBy.x; y/Oy C ıBx.z/Ox C ıBy.z/Oy;

where the 2D component ıBx=y.x; y/ describes the magnetic field fluctuations that
convect with the background flow. The second set of terms ıBx=y.z/ comprises the
slab or Alfvénic component. For notational convenience, we express magnetic field
variations as ıBx=y and this includes both the slab and 2D components.

The Cartesian form of the momentum coordinates p D .px; py; pz/ in the
mean-field aligned co-moving coordinate system (pz is along the mean-field
direction) can be expressed in terms of spherical coordinates, so that p D
p.sin 
 cos�; sin 
 sin�; cos 
/, where p is the particle momentum magnitude, 

the particle pitch-angle, and � the particle phase angle. Consider the right-hand side
of (5.31),

.p � ıB/ � rpf0 D p.ıBz sin 
 sin� � ıBy cos 
; ıBx cos 
 � ıBz sin 
 cos�;

ıBy sin 
 cos� � ıBx sin 
 sin�/ � rpf0

D .p � ıB/x @f0
@px

C .p � ıB/y @f0
@py

C .p � ıB/z @f0
@pz

:

On using the results,

@

@px
D sin 
 cos�

@

@p
C cos 
 cos�

1

p

@

@

� sin�

p sin 


@

@�
I

@

@py
D sin 
 sin�

@

@p
C cos 
 sin�

1

p

@

@

C cos�

p sin 


@

@�
I (5.33)

@

@pz
D cos 


@

@p
� sin 


1

p

@

@

;

we find that

� q

m

�
p � ıB � rpf0

� D �j˝j
B

�
ıBx sin� � ıBy cos�

� @f0
@

;
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and the coefficient of @f0=@p is identically zero. In deriving this result, we have
invoked the further assumption that the ensemble averaged distribution function
is gyrotropic i.e., is independent of the particle phase angle �. Thus, effects such
as diffusion perpendicular to the mean magnetic field and gradient and curvature
drifts are neglected in this description of particle transport. This is equivalent
to assuming that the particle gyroradius rg � `c , the correlation length of
the turbulent fluctuations. Equivalently, this requires that the particle gyroperiod

g D ˝�1 � 


p
c .

The evolution equation for ıf is a first-order quasi-linear equation and therefore
can be solved using the method of characteristics. Accordingly, we have the
following set of seven ordinary differential equations to solve,

d

dt
ıf D �j˝j

B

�
ıBx sin� � ıBy cos�

� @f0
@


I (5.34)

dr
dt

D p
m

I (5.35)

dp
dt

D p �˝: (5.36)

For particles located initially at r0 D r.t0/ D .x0; y0; z0/ with momentum p0 and
phase angle �0, we can solve the above odes to obtain

�.t 0/ D �0 �˝.t 0 � t0/I x.t 0/ D x0 � rg
�
sin�.t 0/ � sin�0

� I
y.t 0/ D y0 C rg

�
cos�.t 0/ � cos�0

� I z.t 0/ D z0 C v cos 
.t 0 � t0/I

ıf .r;p; t / D
Z t

t0

�

�j˝j
B

�
ıBx sin�0 � ıBy cos�0� @f 0

0

@


�

dt 0 C ıf .r0;p0; t0/;

(5.37)

where rg D v sin 
=˝ is the particle gyroradius, and �0 
 �.t 0/, ıBi .r.t 0/; t 0/, and
f0 D f0.r.t 0/;p.t 0/; t 0/. The particles evidently follow undisturbed helical orbits
along B0 since p and 
 are unchanged during the interaction period, this being
less than the characteristic time scale for particles to interact with small-amplitude
turbulence, viz. 
pc . Consequently, 
pc must be restricted so that t 0 � t0 remains
sufficiently small that ıf � f0.

The above expressions can be rewritten in terms of the time difference �t 

t � t 0, where t denotes the observation time and t 0 is the time during which the
particle executes a helical trajectory. Hence, �t 2 Œt � t0; 0� so this substitution
implies that we follow the particle trajectory backward in time. Rewriting the
solution for ıf yields

ıf .r;p; t / D
Z t�t0

0

�

�˝
B

�
ıBx sin� � ıBy cos�

� @f0
@


�

d.�t/C ıf .r0;p0; t0/;



5.4 Quasi-linear Transport Theory of Charged Particle Transport... 231

where � D �.t��t/, ıBi .r.t��t/; t��t/, and f0 D f0.r.t��t/;p.t��t/; t�
�t/. The expressions for the undisturbed particle orbits are now independent of the
initial values, and are given by

�.t��t/ D�.t/C˝.�t/I x.t��t/Dx.t/�rg .sin�.t��t/� sin�.t// I
y.t ��t/ D y.t/C rg .cos�.t ��t/ � cos�.t// I z.t ��t/

D z.t/C �v cos 
.�t/:

Note that t � t0 � 

p
c and thus jr � r0j � `c . If �k denotes the parallel mean free

path for the spatial diffusion of particles, then the assumption of small amplitude
turbulence implies that `c � �k. The overall ordering of scales is therefore rg �
`c � �k � L.

Having obtained the solution ıf , we can evaluate the ensemble-averaged colli-
sion term on the right-hand-side of (5.32). Introducing

	1 
 � cos�ıBy C sin�ıBx I 	2 
 sin�ıBy C cos�ıBx;

we have

q

m

�

p � ıB � @
@p
ıf

�

D j˝j
B
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.� cos�ıBy C sin�ıBx/
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�
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hıf 	1i C j˝j

B
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@
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�
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�

D j˝j
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�
@

@

hıf 	1i C cos 
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hıf 	1i

�

C j˝j
B
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@

@�
hıf 	2i

D j˝j
B

1

sin 


@

@

.sin 
 hıf 	1i/C j˝j

B

cos 


sin 


@

@�
hıf 	2i ;

after using @	2=@� D �	1. Since f0 is independent of gyrophase, we neglect the
last term. Thus, in spherical coordinates, we have the relation

�q
�

p � ıB
m

� @ıf
@p

�

D � 1

sin 


@

@


� j˝j
B

sin 

˝�
ıBx.r; t / sin�.t/ � ıBy.r; t / cos�.t/

�
ıf
˛
�

:
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On substituting for ıf and using the relations,

cos�.t/ D cos .�.t ��t/ �˝.�t//
D cos�.t ��t/ cos.˝�t/C sin�.t ��t/ sin.˝�t/I

sin�.t/ D sin .�.t ��t/ �˝.�t//
D sin�.t ��t/ cos.˝�t/ � cos�.t ��t/ sin.˝�t/:

we obtain a diffusion equation in particle pitch angle,

� q
�

p � ıB
m

� @ıf
@p

�

D 1
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@

@


�

D



@f0

@


�

; (5.38)

where the diffusion coefficient D

 is given by

D

 .r; t / D
�
˝

B

�2
sin 


Z 1

0

�
Ryyc

2 � .Rxy �Ryx/cs CRxxs
2
�

� cos.˝�t/d.�t/

C
�
˝

B0

�2
sin 


Z 1

0

�
RyycsCRxyc2�Ryxs2�Rxxcs

�
sin.˝�t/d.�t/:

Here, c 
 cos�.t � �t/ D cos .�.t/C˝�t/ and s D sin�.t � �t/ D
sin .�.t/C˝�t/, and Rij is the two-point, two-time correlation function for the
magnetic fluctuations along the unperturbed particle orbit, i.e.,

Rij .�r.�t/;�t/ 
 hıBi .0/ıBj .�r.�t/;�t/i:

We then have

Rij .r; r.t ��t/; t; t ��t/ D ˝
ıBi .r; t /; ıBj .r.t ��t/; t ��t/˛ ;

where the components of r.t ��t/ are determined above.
Observe that in deriving the diffusion form of the particle transport equation,

we moved the pitch-angle derivative of the distribution function f0 from under the
integral in the expression for ıf . There is an important implication embedded in
the time scales associated with the ordering of particle scattering and diffusion,


p
c � 
�. This ordering implies that Rij ! 0 on a much shorter time scale than

the time scale on which the particle orbit deviates from an undisturbed trajectory,
implying that the integrand contributes only over the time 
pc rather than 
� to the
time integration. Since the gyrotropic-independent distribution function f0 varies on
a time scale comparable to the pitch-angle diffusion time 
�, derivatives of f0 can be
taken out from under the integral. The second implication is that we can then extend
the integral describing pitch-angle diffusion to 1 (t0 ! �1 in the expression
for ıf ).
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The turbulence responsible for scattering the particles has been assumed to be
axisymmetric about the mean magnetic field B0 D B0 Oz. The axisymmetry condition
for the correlation matrix R.ır/ under an arbitrary rotation �0 about B0 D B0 Oz is
expressed by

R.ır/ D OR.OT ır/OT ;

where both the left- and right-hand sides are independent of �0, and O is the rotation
matrix

O D
0

@
cos�0 sin�0 0

� sin�0 cos�0 0
0 0 1

1

A ;

and OT is the transpose. Hence, the elements of the left and right matrices

R.ır/ D
0

B
@

Rxx Rxy Rxz

Ryx Ryy Ryz

Rzx Rzy Rzz

1

C
ADOR.OT ır/OT

D
0

B
@

Rxxc
2CRxyscCRyxscCRyys2 �RxxscCRxyc2�Ryxs2CRyysc RxzcCRyzs

�Rxxsc�Rxys2CRyxc2CRyysc Rxxs
2�RxyscCRyxscCRyyc2 �RxzsCRyzc

RzxcCRzys �RzxsCRzyc Rzz

1

C
A ;

(5.39)

are independent of �0. Inspection of the axisymmetric matrix conditions show that
the integrands of the diffusion coefficient D

 are therefore independent of �0.
Consequently, using �0 D �.t ��t/, we have

ıx 
 x.t ��t/ � x.t/
D rg Œsin�.t/ � sin�.t ��t/�
D rg Œsin�.t ��t/.cos.˝�t/ � 1/ � cos�.t ��t/ sin.˝�t/�

D �rg sin.˝�t/;

etc. if we set �.t ��t/ D 0. This therefore yields

ır D 	�rg sin.˝�t/; rg.1 � cos.˝�t//;�v cos 
.�t/


;

from which we find

�
OT ır

�
x

D �rg Œcos�.t ��t/ sin˝�t C sin�.t ��t/.1 � cos˝�t/� I
�
OT ır

�
y

D rg Œ� sin�.t ��t/ sin˝�t C cos�.t ��t/.1 � cos˝�t/� I
�
OT ır

�
y

D �v cos 
�t;
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which corresponds to the unperturbed helical trajectories derived by substituting the
trigonometric expansions for cos�.t/ etc. as done above. Thus, for axisymmetric
turbulence, the Rij terms in the pitch-angle diffusion coefficient are independent of
�.t ��t/, so we may without loss of generality set �.t ��t/ D �=2, significantly
simplifying the expression for the diffusion coefficient,

D

 D sin 


�
˝

B0

�2 Z 1

0

�
cos.˝�t/Rxx � sin.˝�t/Ryx



d.�t/: (5.40)

The integral (5.40), divided by B2
0 , is essentially the particle decorrelation time. In

addition, setting �.t ��t/ D �=2 allows the arguments of the two-point, two-time
correlation functions to be expressed as

x.t ��t/ D x.t/C rgŒcos.˝�t/ � 1�I y.t ��t/ D y.t/ � rg sin.˝�t/I
z.t ��t/ D z.t/ � v cos.
�t/:

By introducing a mean magnetic field B0 D B0 Oz into Eq. (5.32), and using � D
cos 
 , the cosine of the particle pitch-angle, we obtain the simplest 1D form of the
collisionless transport equation as

@f0

@t
C �v

@f0

@z
D @

@�

�

D��

@f0

@�

�

; (5.41)

where the Fokker-Planck diffusion coefficient in pitch-angle space is given by

D�� D .1 � �2/
�
˝

B0

�2 Z 1

0

�
cos.˝�t/Rxx � sin.˝�t/Ryx

�
d.�t/: (5.42)

For slab turbulence, the pitch-angle scattering diffusion coefficient can be further
simplified since Ryx D 0, yielding the standard expression

D�� D .1 � �2/
�
˝

B

�2 Z 1

0

Rslabxx cos.˝�t/d.�t/: (5.43)

Using the results of the previous section, we may evaluate D�� for slab turbulence.
Recall that

Rxx D
Z
d3kP slab

xx .k/eik�r

D
Z 2�

0

Z 1

0

Z 1

�1
gslab.kk/

ı.k?/
k?

eik�rk?d
dk?dkk

D 4�

Z 1

0

gslab.kk/eikk
zdkk

D 4�

Z 1

0

gslab.kk/eikk
�vdkk;
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where we used z D �v cos 
 t . On replacing �t by t in (5.43), we have

D�� D 4�.1 � �2/
�
˝

B

�2 Z 1

0

Z 1

0

gslab.kk/e�i.k
k
�v�˝/tdkkdt

D 4�2.1 � �2/
�
˝

B

�2 Z 1

0

gslab.kk/ı.kk�v �˝/dkk

D 4�2.1 � �2/
�
˝

B

�2
gslab

�

kk D ˝

�v

�

:

Thus, for slab turbulence, energetic charged particles diffuse in pitch angle due to
their scattering with waves that satisfy the resonance condition �vkk D ˝.

Exercises

1. Rewrite the Vlasov equation (5.30) using a mean field expansion for the
electromagnetic variables, assuming that the particle distribution function is
co-moving with the plasma (thus ensuring that E0 D 0), and neglecting the
fluctuating electric field term. Hence derive (5.31) and (5.32).

2. Derive the relations (5.33) and hence show that

� q

m

�
p � ıB � rpf0

� D �˝
B

�
ıBx sin� � ıBy cos�

� @f0
@

:

5.5 Diffusion Perpendicular to the Mean Magnetic Field:
The Nonlinear Guiding Center Theory

To determine the transport of energetic particles perpendicular to a mean magnetic
field is not possible within a gyrophase averaged formulation of the Fokker-Planck
equation. Instead, we can compute directly the perpendicular spatial diffusion
coefficient �? from the Fokker-Planck coefficients. Recall that the mean square
displacement is given by

˝
.�x/2

˛ D ˝
.x.t/ � x.0//2˛ ;

for an averaging operator h: : :i. Several forms of diffusion can be described if we
suppose that the following temporal scaling holds for the spatial variance

˝
.�x/2

˛ � t � :

The following regimes are typically identified:

1. 0 < � < 1: subdiffusion;
2. � D 1: regular Markovian diffusion;
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3. 1 < � < 2: superdiffusion, and
4. � D 2: free streaming or ballistic particle motion.

There have been suggestions that energetic particles can be subdiffusive, and at
early times in an impulsive solar energetic particle event, particles are typically
free streaming. Over long time scales, however, particle motion is more typically
diffusive.

The diffusion coefficient is defined as

�xx D lim
t!1

˝
.�x/2

˛

2t
;

where we assume that x is normal to the mean magnetic field. To estimate the spatial
variance, we appeal to the Taylor-Green-Kubo (TGK) formalism. In general, the
variance is given by

˝
.�x/2

˛
.t/ D

*�Z t

0

vx.
/d


�2+

D
Z t

0

d


Z t

0

d�hvx.
/vx.�/i

D
Z t

0

d


Z 


0

d�hvx.
/vx.�/i C
Z t

0

d


Z t




d�hvx.
/vx.�/i:

On assuming temporal homogeneity, i.e., that the velocity correlation depends only
on the time difference, then we choose

hvx.
/vx.�/i D hvx.
 � �/vx.0/i

for the first integral, and

hvx.
/vx.�/i D hvx.� � 
/vx.0/i

for the second, to obtain

˝
.�x/2

˛
.t/ D

Z t

0

d


Z 


0

d�hvx.
 � �/vx.0/i C
Z t

0

d


Z t




d�hvx.� � 
/vx.0/i

D
Z t

0

d


Z 


0

d�hvx.�/vx.0/i C
Z t

0

d


Z t�


0

d�hvx.�/vx.0/i;

after using the transformations 
 � � ! � and � � 
 ! � in the respective integrals.
These integrals can be simplified using partial integration and applying Leibnitz’
rule to obtain
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˝
.�x/2

˛
.t/ D 


Z 


0

d�hvx.�/v0.0/i
ˇ
ˇ
ˇ
ˇ

t

0

�
Z t

0

d

hvx.
/vx.0/i

C 


Z t�


0

d�hvx.�/vx.0/i
ˇ
ˇ
ˇ
ˇ

t

0

C
Z t

0

d

hvx.t � 
/vx.0/i

D t

Z t

0

d�hvx.�/vx.0/i �
Z t

0

d

hvx.
/vx.0/i

C
Z t

0

d

hvx.t � 
/vx.0/i

D
Z t

0

d
.t � 
/hvx.
/vx.0/i C
Z t

0

d

hvx.t � 
/vx.0/i

D 2

Z t

0

d
.t � 
/hvx.
/vx.0/i:

The running diffusion coefficient dxx.t/ is defined as

dxx.t/ D 1

2

d

dt

˝
.�x/2

˛
.t/

D 1

2

d

dt
2

Z t

0

.t � 
/hvx.
/vx.0/i

D
Z t

0

d
hvx.
/vx.0/i:

The limit dxx.t ! 1/ defines diffusive particle transport, therefore

�xx D
Z 1

0

d
hvx.
/vx.0/i;

which is the Kubo formula for the diffusion coefficient.
A detailed discussion of guiding center motion of energetic charged particles

can be found in many plasma text books and so is not repeated here. Instead, if we
assume that background magnetic field is varying slowly, that for any of the slab,
2D, or composite turbulence models discussed above, the guiding center velocity
(assuming B D B0 Oz C ıB) is given by

vgx.t/ ' vz.t/
ıBx

B0
I vgy ' vz.t/

ıBy

B0
:

Note that the assumption of slab, 2D, or composite turbulence models implies that
ıBz D 0. Particle motion is thus a superposition of the particle gyromotion and
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the stochastic motion of the particle’s guiding center, which follows the random
motion of magnetic field lines. The gyromotion can be neglected when computing
a diffusion coefficient.

The first systematic derivation of the perpendicular diffusion coefficient was
proposed by Matthaeus et al. (2003) and is called the nonlinear guiding center
(NLGC) theory. Improvements and extensions to the original model have been
made9 but the original development is very instructive in its simplicity. To ensure
agreement with numerical simulations of particles experiencing scattering in low
frequency turbulence, we introduce a parameter a (typically taken to be 1=3) that
allows for slight deviations from purely guiding center motion, and take

vgx D avz
ıBx

B0
:

This is reasonable since the magnetic field can occasionally experience variation
on scales that are not necessarily slowly varying. The TGK expression for the
perpendicular diffusion coefficient is

�xx D
Z 1

0

dt hvgx.t/vgx.0/i

D a2

B2
0

Z 1

0

dt hvz.t/ıBx.t/vz.0/ıB
�
x .0/i :

The fourth-order correlation introduces a closure problem. This is frequently
resolved by the assumption that the fourth-order correlation can be replaced by
the product of second-order correlations (motivated by the example of Gaussian
statistics), which yields

�xx D a2

B2
0

Z 1

0

dt hvz.t/vz.0/i hıBx.t/ıB�
x .0/i :

Since the particle velocity along the field is mediated by pitch-angle scattering, we
may suppose that particle distribution becomes approximately isotropic on diffusion
time scales and that there is a decorrelation time scale associated with the parallel
velocity. The decorrelation time will be related to the parallel mean free path, so
we can use an exponential model to describe the two-point velocity correlation
function,

hvz.t/vz.0/i D v2

3
e�vt=�

k :

9Well summarized by Shalchi (2009)
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The magnetic correlation function Rxx.t/ D hıBx.t/ıB�
x .0/i can be expressed as a

Fourier transform

ıBx.x; t / D
Z
d3kıBx.k; t /eik�x ) Rxx.t/ D

Z
d3k

˝
ıBx.t/ıB

�
x .0/e

ik��x˛ ;

under the assumption of homogeneous turbulence.
At this point, it is still unclear how to further decompose the ensemble averaged

integrand in the magnetic correlation function. Corrsin (1959) suggested that at
long diffusion times, the probability distribution of particle displacements and the
probability distribution of the Eulerian velocity field would become statistically
independent of each other – this is Corrsin’s independence hypothesis. At large
values of the diffusion time, the independence hypothesis asserts that the joint
average in Rxx can be expressed as the product of two separate averages, i.e.,

˝
ıBx.t/ıB

�
x .0/e

ik��x˛ D hıBx.t/ıB�
x .0/i

˝
eik��x˛ :

Applying Corrsin’s independence hypothesis then yields

Rxx.t/ D
Z
d3kPxx.k; t /

˝
eik��x˛ ;

requiring only that we estimate the characteristic function
˝
eik��x

˛
. The simplest

approximation is to assume a Gaussian distribution of the particles, so that

˝
eik��x˛ D exp

�

�1
2

˝
.�x/2

˛
k2x � 1

2

˝
.�y/2

˛
k2y � 1

2

˝
.�z/2

˛
k2z

�

:

Since we are considering time scales that correspond to large values of the diffusion
time, we can approximate the parallel and perpendicular transport as diffusion, so
that

˝
.�x/2

˛ D 2t�xx for example, yielding

˝
eik��x˛ D exp

h
��xxk2xt � �yyk2yt � �zzk

2
z t
i
:

Subject to these six assumptions, we obtain a nonlinear integral equation for the
perpendicular diffusion coefficient

�xx D a2

B2
0

Z
d3k

Z 1

0

dtPxx.k; t / exp
h
�vt=�k � �xxk2xt � �yyk2yt � �zzk

2
z t
i
:

On expressing the correlation tensor Pxx.k; t / as the product of a stationary tensor
Pxx.k/ and a dynamical correlation tensor � .k; t /, i.e., Pxx.k; t / D � .k; t /Pxx.k/,
and assuming the exponential form,

� .k; t / D e��.k/t ;



240 5 Charged Particle Transport in a Collisionless Magnetized Plasma

allows the time integral to be solved

�xx D a2v2

3B2
0

Z
d3k

Pxx

v=�k C �xxk2x C �yyk2y C �zzk2z C �.k/
: (5.44)

The nonlinear integral equation (5.44) is the central result of the NLGC theory,
describing the diffusion of energetic particles perpendicular to the mean magnetic
field where ıBz D 0. The particle transport results from a combination of pitch-
angle scattering along the magnetic field while the underlying magnetic field is
experiencing random diffusive motion. The superposition of parallel transport and
random magnetic field transport of the particle guiding center leads to a nonlinear
diffusion of particle normal to the large-scale magnetic field. As indicated, more
sophisticated treatments of the NLGC theory have been developed since. The
nonlinear integral equation (5.44) can be solved approximately and analytically for
the slab, 2D, and composite turbulence models in the magnetostatic limit.10

5.6 Hydrodynamic Description of Energetic Particles

In deriving the cosmic ray transport equation, we have assumed that the underlying
energetic particle distribution function is isotropic to zeroth order. We further
assumed that the energetic particle number density and momentum is sufficiently
small that the background flow in which the “scattering centers” (Alfvén waves or
MHD turbulence) are convected is not altered by the energetic particle population,
nor is the convection electric field. Energetic particles therefore behave essentially
as massless particles that may possess a significant internal energy, which will be
expressed through an isotropic or scalar pressure, say Pc , and energy density Ec ,
and an energy flux Fc .11 In this case, the general system of MHD equations will be
modified by the inclusion of the cosmic rays, through

@n

@t
C r � .nu/ D 0I (5.45)

@G
@t

C r � ˘ D 0I (5.46)

@W

@t
C r � S D 0; (5.47)

10Zank et al. (2004) and Shalchi et al. (2004).
11Webb (1983) and Zank (1988).
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where

G D nuI
˘ij D .Pg C Pc/ıij C nuiuj � Tij I

Tij D 1

�
BiBj � 1

2�
B2ıij I

W D Eg CEc C mnu2

2
C 1

2�
B2I

S D 1

�
E � B C

�

Eg C Pg C mnu2

2

�

u C Fc I

Eg D Pg

�g � 1 :

The terms G, ˘ , Tij , W , and S denote respectively the momentum density, the
momentum flux, the Maxwell stress tensor, the total energy density, and the total
energy flux. The physical quantities n, u, Pg, Eg, and �g are the (background)
plasma number density, bulk flow velocity, thermal gas pressure, thermal gas
energy density, and adiabatic index of the background plasma (typically D 5=3)
respectively. As usual, the electric field, magnetic field, and magnetic permeability
are denoted respectively by E, B, and �. The energetic particle or cosmic ray energy
density, pressure, and energy flux are given by Ec , Pc , and Fc . To close the system
of equations (5.44)–(5.47), we appeal to the transport equation derived above (and
neglecting drifts)

@f

@t
C u � rf � p

3
r � u

@f

@p
D r � .� � rf / ;

and use the following moments,

Pc D 4�

3

Z 1

0

p3vf .p; x; t /dpI (5.48)

Ec D 4�

Z 1

0

p2T .p/f .p; x; t /dp; (5.49)

where T .p/ is the particle kinetic energy. By taking the energy moment of the
transport equation, we obtain a “hydrodynamic” equation for the transport of cosmic
rays,

@Ec

@t
C r � Fc � u � rPc D 0I

Fc D u.Ec C Pc/ � N� � rEc;
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where

N�.x/ D
R1
0
p2T .p/�.x; p/ � rfdp
R1
0
p2T .p/rfdp ;

is an effective mean diffusion coefficient. The internal energy density is related to
the energetic particle pressure through an adiabatic exponent �c (that is 4=3 for
relativistic particles and 5=3 for non-relativistic particles) by the closure relation

Pc D .�c � 1/Ec:

To complete the system of equations, the electromagnetic equations must satisfy
Maxwell’s equations,

@B
@t

D �r � E; r � B D 0; J D 1

�
r � B; (5.50)

where J is the current density. For a highly conducting MHD fluid, the electric field
is given by Ohm’s law,

E D �u � B:

Although a little laborious, the elimination of the cosmic ray terms in the total
energy equation (5.47) and using Poynting’s theorem to eliminate the electromag-
netic terms yields the simpler adiabatic equation for the thermal gas pressure,

�
@

@t
C u � r

�

Pg D ��gPgr � u; (5.51)

which can be used whenever the background flow is smooth (i.e., in the absence of
shock waves or other discontinuities in the flow).

The so-called “two-fluid” system of equations incorporating cosmic rays has
been used to investigate the structure of shocks in the presence of an energetic
particle population, including the evolution of shocks associated with supernova
remnants. These equations provide a relatively tractable approach to the inclusion
of nonlinearities and their modification by cosmic rays. To illustrate the effect that
cosmic rays or other energetic particles can have on the background plasma, we will
consider briefly the propagation of linear and nonlinear waves in an astrophysical
plasma mediated by cosmic rays.

Suppose that wave propagation is 1D and is represented by a wave vector k D
k Ox in the Cartesian coordinates .x; y; z/ and that @=@y D @=@z D 0. By writing
u D .ux; uy; uz/ and B D .Bx; By; Bz/, equations (5.44)–(5.47) reduce to

@�

@t
C @

@x
.�ux/ D 0I

�
dux
dt

D � @

@x
.Pg C Pc/ � 1

2�

@

@x

�
B2
y C B2

z

�
I
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�
duy
dt

D Bx

�

@By

@x
I �

duz

dt
D Bx

�

@Bz

@x
I Bx D const.I

@By

@t
D @

@x

�
uyBx � uxBy

� I
@Bz

@t
D @

@x
.uzBx � uxBz/ I

dPg

dt
C �gPg

@ux
@x

D 0I
dPc

dt
C �cPc

@ux
@x

� � @
2Pc

@x2
D 0;

where � is taken to be spatially constant and

d

dt

 @

@t
C ux

@

@x

is the Lagrangian time derivative along the flow. Note that the induction equations
ensure that the magnetic field is frozen into the fluid flow u. Evidently, the cosmic
rays introduce a characteristic length scale into the problem, L D �=u, which we
shall exploit shortly. By linearizing about the uniform equilibrium state u D 0, � D
�0, Pg D Pg0, Pc0, B D .Bx; By0; Bz0/ and seeking solutions / exp Œi.!t � kx/�,
with Vp 
 !=k the wave phase speed, we can derive the dispersion relation
(Exercise)

.V 2
p � V 2

x /
h
V 5
p � i�kV 4

p � .V 2
A C a2�/V 3

p C i�k.V 2
A C a2g0/V

2
p

Ca2�V 2
x Vp � i�ka2g0V 2

x

i
D 0; (5.52)

where

V 2
A D B2

0

��0
; Vx D VA cos�; a2g0 D �gPg0

�0
;

a2c0 D �cPc0

�0
; a2� D a2g0 C a2c0:

Here, VA and Vx are the Alfvén speeds, � the angle between the magnetic field and
the wave vector k, and ag0, ac0, and a� are the sound speeds of the thermal gas, the
cosmic ray gas, and the mixture respectively. Obviously, since the Alfvén wave is
incompressible, cosmic rays do not effect their propagation characteristics and we
have from (5.52),

Vp D ˙Vx:
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By contrast, the fifth-order dispersion relation within the square brackets of (5.52)
contains the spatial dispersion coefficient �. By setting � D 0 in (5.52), we see that
the reduced dispersion relation possesses exactly the same biquadratic form as that
of MHD, viz.,

V 4
p � .V 2

A C a2�/V 2
p C a2�V 2

x D 0;

together with a non-propagating mode Vp D 0, and hence the fast and slow
magnetosonic modes,

V 2
p D V 2

f;s D 1

2

�

V 2
A C a2� ˙

q
.V 2
A C a2�/2 � 4a2�V 2

x

�

:

However, the critical difference between these wave modes and those derived
in the usual MHD theory is the presence of the mixed sound speed a� Dp
.�gPg0 C �cPc0/=�0 indicating that the cosmic rays couple to the background

plasma and alter the phase speed for these wave modes. If we instead consider the
long wavelength limit �k=Vp � 1, we find that the long wavelength magnetosonic
modes satisfy (Exercise)

Vp D Vf;s C i�kˇ CO
�
.�k/2

�
;

where

ˇ D
a2c0

�
V 2
f;s � V 2

x

�

2
h
.V 2
A C a2�/V 2

f;s � 2a2�V 2
x

i :

Short wavelength modes propagate at the usual magnetosonic speeds defined by the
thermal plasma but are nonetheless damped by cosmic rays (Exercise).

Following our general theme of weak shock structure, we may consider the
nonlinear propagation of either long wavelength or short wavelength modes in the
two-fluid cosmic ray model as a simplification of the full shock structure problem.
We use the method of multiple scales, which is closely related to the reductive
perturbation method utilized already although a little more systematic. To this end,
we exploit the length scale L introduced by the spatial diffusion coefficient � i.e.,
L � �=Vp for a characteristic speed Vp . We introduce a time scale T such that the
relationship

VpT

L
D 1;

and the following normalizations,

x D L Nx; t D T Nt ; NB D B=B0; NPg;c D Pg;c=Pg0:c0;

N� D �=�0; u D Vp Nu:



5.6 Hydrodynamic Description of Energetic Particles 245

This allows us to rewrite the 1D system of equations in the non-dimensional form,

@�
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C @
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.�ux/ D 0I
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D � Na2g0
�g
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duy
dt

D NV 2
A

Bx

�

@By

@x
I �

duz

dt
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A
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�

@Bz
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I Bx D const.I

@By

@t
D @

@x

�
uyBx � uxBy

� I
@Bz

@t
D @

@x
.uzBx � uxBz/ I

dPg

dt
C �gPg

@ux
@x

D 0I
dPc

dt
C �cPc

@ux
@x

� � @
2Pc

@x2
D 0:

For convenience,the bars are omitted over the various quantities with the exception
of the sound speeds and Alfvén speed,

Nag0;c0 D ag0;c0=Vp; NVa D VA=Vp;

and the long wavelength parameter is defined as

� D �=.VpL/:

The dependent variables are expanded as an asymptotic series in a small parameter
" by using the fast and slow variables

� D x � t; 
 D "t;

together with the expansions

�D1C"�1C � � � ; uxD"u1xC � � � ; uzD"u1z C � � � ; BzDB0
z C"B1

z C � � � ;
PgD1C"P 1

gC � � � ; PcD1C"P 1
c C � � � ;

where it is convenient to assume uy D 0 and By D 0. The derivatives are
calculated as

@

@x
D @

@�
;

@

@t
D "

@

@

C @

@�
:
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The lowest order system of equations is given by
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To integrate this system of equations, we assume that the plasma is in a uniform
state upstream, so that to O."/ we obtain

�1 D u1x I

u1x D Na2g0
�g
P 1
g C Na2c0

�c
P 1
c C NV 2

AB
0
zB

1
z I

u1z D � NV 2
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0
xB

1
z I

B1
z D �Bxu1z C B0

z u1x I
P 1
g D �gu1x I P 1

c D �cu
1
x;

so that we have the eigenvector solutions

�
�1; u1x; u

1
z ; B

1
z ; P

1
g ; P

1
c

�
D u1x

 

1; 1;�
NV 2
ABxB

0
z

1 � NV 2
x

; �g; �c

!

;

provided that the relation

1 D Na2g0 C Na2c0 �
NV 2
AB

0
z
2

1 � NV 2
x
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holds. This is of course nothing more than the normalized form of the dispersion
relation for magnetosonic waves with the cosmic ray pressure and thermal gas
pressure contributing i.e., the long wavelength limit of the dispersion relation

V 4
p � .a2� C V 2

A/V
2
p C a2�V 2

x D 0:

The slow time dependence is determined from the O."2/ set of equations,
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:

The above nonlinear system can reduced quite easily to a single nonlinear evolution
equation by eliminating all second-order variables in favor of u2x and then using the
dispersion relation repeatedly (Exercise). Doing so yields the Burgers’ equation for
the nonlinear evolution of the fast mode magnetosonic mode in the presence of an
energetic particle population, now presented in a non-normalized form,

@u1x
@


C ˛u1x
@u1x
@�

D �
@2u1x
@�2

; (5.53)

where

˛ D
h
.�g C 1/a2g0 C .�c C 1/a2c0

i
.V 2
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x /C 3.V 2
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2
p � a2�V 2

x /

2
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i I

� D �a2c0.V
2
p � V 2

x /

2
h
.a2� C V 2

A/V
2
p � 2a2�V 2

x

i :

As discussed previously, the Burgers’ equation can be used to describe weak shocks,
and the role of cosmic rays or energetic particles in providing the shock dissipation
is revealed through the second-order term in (5.53).

For shocks parallel to the ambient magnetic field Vx D VA and the dispersion
relation reduces to
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.V 2
p � V 2

A/.V
2
p � a2�/ D 0:

Hence for the sound wave, Vp D ˙a� and the coefficients of Burgers’ equa-
tion (5.53) reduce to

˛k D .�g C 1/a2g0 C .�c C 1/a2c0

2a2�
; �k D �a2c0

2a2�
:

For perpendicular shocks, Vx D 0, so the coefficients of Burgers’ equation (5.53)
become

˛? D .�g C 1/a2g0 C .�c C 1/a2c0 C 3V 2
A

2.a2� C V 2
A/

; �k D �a2c0
2.a2� C V 2

A/
:

The preceding analysis was restricted to waves with wavelengths that are greatly
in excess of the diffusive length scale. We can consider short wavelength modes
for which the parameter � � 1. These short wavelength modes are in fact of
considerable interest in the context of the stability of astrophysical shocks mediated
by cosmic rays since they can destabilize the foreshock.12 Following the analysis
presented above allows for the investigation of linear and nonlinear short wavelength
modes in a homogenous flow. We now suppose that

1

�
D "

K
:

Such a scaling leads again to the integrated O."/ system of equations above, except
that P 1

c D 0, and the normalized dispersion relation reduces to

1 D Na2g0 �
NV 2
AB

0
z
2

1 � NV 2
x

:

The O."2/ system of equations is obtained similarly, except that now

@P 2
c

@�
D �c

K
u1x:

The nonlinear equation of evolution for short wavelength fluctuations is then
given by

@u1x
@


C ˛u1x
@u1x
@�

D ��u1x; (5.54)

where

12Drury and Falle (1986), Zank and McKenzie (1987), and Zank et al. (1990).
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Unlike Burgers’ equation, the nonlinear equation (5.54) does not have a dissipative
term to balance the wave steepening, but it does contain a damping term � that is
inversely proportional to the diffusion coefficient � and proportional to the cosmic
ray pressure. Thus, cosmic rays do not mediate the propagation speed of waves that
have wavelengths shorter than the diffusive length scale, but they do act to damp
these modes. Short wavelength modes therefore damp as they steepen, which can
be seen from the general solution to (5.54),

u1x D e��
f .� � ˛u1x
/;

for arbitrary initial data f .x; t D 0/.

Exercises

1. Derive the dispersion relation (5.52) for linear wave modes in a cosmic ray
mediated plasma.

2. By considering the long wavelength limit of the dispersion relation (5.52), show
that the fast and slow magnetosonic modes are damped by cosmic rays since the
waves propagate approximately according to

Vp D Vf;s C i�kˇ CO
�
.�k/2

�
:

Show that in the opposite limit, short wavelength modes decouple from the
cosmic rays in that they propagate at the thermal magnetosonic speed, but are
nonetheless damped by cosmic rays since

Vp D Vf;s C i
�

2�k
;

where Vf;s is the fast/slow magnetosonic speed for the thermal plasma (i.e., the
dispersion relation contains only the thermal pressure Pg0 with no contribution
from Pc0), and

� D a2c0.V
2
p � V 2

x /

.a2g0 C V 2
A/V

2
f;s � 2a2g0V 2

x

:

3. Derive Burgers’ equation (5.53) from the O."2/ expansion of the magnetized
two-fluid equations.
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5.7 Application 1: Diffusive Shock Acceleration

It is quite straightforward to see that a particle gains energy by interacting once with
a shock, most easily seen for a superluminal shock perpendicular to the magnetic
field. In this case, we can suppose that a particle conserves its first adiabatic moment,

p2?;1
B1

D p2?;2
B2

;

where the subscripts 1,2 denote upstream and downstream of the shock. At a
perpendicular shock, the jump in magnetic field B2=B1 is equal to the shock
compression ratio, showing that the perpendicular momentum of an energetic
particle can be increased by a factor of 2 or less. This is not a particularly large
energy gain, and the effect is of course annulled by the expansion of the downstream
medium to the original density. Since the process is purely kinematic and reversible,
the energetic particle spectrum is essentially the preacceleration spectrum shifted
in energy. The situation is quite different when diffusive effects are included
since the number of times that a particle interacts with a shock then becomes a
random variable and some particles, by interacting many times with the shock,
achieve very high energies. The stochastic character of particles interacting with the
shock diffusively corresponds to an increase in entropy for the energetic particle
distribution (as it does for the thermal background plasma), with the result that
the accelerated particle spectrum is relatively independent of the details of the
preacceleration spectrum. We discuss the macroscopic approach to the diffusive
acceleration of energetic particles at a shock based on the transport equation that
we have derived above. This approach was pioneered by Krymsky (1977), Axford
et al. (1977), and Blandford and Ostriker (1978), and is well reviewed by Drury
(1983) and Forman and Webb (1985).

The shock is taken to be an infinite plane separating a uniform upstream and
downstream state, and we choose a frame in which the shock front is stationary.
We shall suppose that all quantities depend only on the x spatial coordinate (a 1D
problem) and that the flow velocity is steady, given by

u.x/ D
�

u1 x < 0

u2 x > 0
;

where u1 and u2 are the upstream and downstream constant velocities. To determine
the boundary conditions that the energetic particle distribution must satisfy at the
shock, we require first that the particle number density must be conserved across
the shock i.e., particles are neither created nor lost at the shock, so that

Œf � D f j0C0� D 0; (5.55)
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where x D 0� and x D 0C denote locations infinitesimally close to the shock on
the upstream and downstream side respectively. The second condition (the transport
equation governing particle transport is second-order) that we require is that the
normal component of the particle current is continuous if there is no source at the
surface, and changes by an amount equal to the particle injection rate at the surface.
To determine the current, observe that the transport equation
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3
r � u
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@p
D r � .� � rf /;

can be expressed as
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C r � S C 1
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@p

�
p3

3
u � rf

�

D 0; (5.56)

where

S D �� � rf � p

3

@f

@p
u

is the energetic particle streaming in space and Jp D .p=3/u � rf is the
streaming in momentum space. Equation (5.56) expresses the transport equation
in fully conservative form in phase space, averaged over � and with the distribution
function close to isotropy. Because cosmic rays are highly mobile (v � u), the
omnidirectional density f cannot change abruptly, hence the normal component of
the net streaming S must be the same on both sides of any surface of discontinuity.
On assuming a steady state and integrating across a sharp discontinuity, we obtain
the second boundary condition that energetic particles must satisfy across a shock,

ŒS� D S � nj0C0� D Q.p/

4�p2
, �

�

� � rf C p

3

@f

@p
u
�

� n

ˇ
ˇ
ˇ
ˇ

0C

0�
D Q.p/

4�p2
: (5.57)

Here, n is the shock normal, and Q.p/ is the particle injection rate at the shock.
This form of the boundary conditions includes the effects of shock drift acceleration.
Note that the transport equation and the derived boundary conditions are appropriate
to relativistic particles i.e., only in the limit that the velocity W (where W is the
speed of the scattering frame or the observer’s frame relative to the frame in which
the electric field vanishes) is much less than the particle velocity v (W � v), as
well as particle drift (through the antisymmetric part of the spatial diffusion tensor
�). That the boundary conditions apply in the limit that W=v � 1 implies that the
boundary conditions (5.55) and (5.57) are valid only for particles of speed v �
u1 sec 
Bn, where 
Bn is the angle between the upstream magnetic field and the
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U2U1

Fig. 5.4 General form of the
solution (5.58) illustrating the
spatial exponential growth of
the distribution function
upstream of the shock and the
constant ambient value far
upstream

shock normal. Furthermore, the transport equation was derived in the limit of near
isotropy in the scattering frame, meaning that the particle distribution upstream and
downstream of the shock must remain close to isotropy. These conclusions can be
weakened slightly for the non-relativisitic form of the transport equation derived
above, but isotropy remains a critical assumption. This latter condition is not always
met at shocks where energetic particle distributions are often observed to be highly
anisotropic.

Consider the 1D transport equation with a constant upstream and downstream
velocity and solve the transport equation on either side of the shock, imposing
continuity of f .x; p/ as x ! ˙1. The transport equation becomes

ui
dfi

dx
� d

dx

�

�.x; p/
dfi

dx

�

D 0;

where i D 1; 2 (upstream, downstream) and �.x; p/ is the diffusion coefficient
parallel to the shock normal. The general solution is

fi .x; p/ D Ai.p/C Bi.p/ exp
Z x

0

u

�.s; p/
dsI

fi .x; p/ D f .˙1; p/C Œf .0; p/ � f .˙1; p/�
eb.x/ � eb.˙1/

1 � eb.˙1/
;

where b.x/ 
 R x
0
.u=�/ dx. If b.˙1/ are unbounded, the spatial dependence is

then given by

f .x; p/ D f .�1; p/C Œf .0; p/ � f .�1; p/� exp
Z x

0

u

�.s; p/
ds x < 0I

D f .0; p/ x > 0: (5.58)

The general solution (5.58) is illustrated in Fig. 5.4. The general solution f .x; p/
has a possible constant background of upstream particles f .�1; p/ plus an
accelerated population that increases toward the shock on a diffusive scale length
�.x; p/=u1 but remains constant downstream.
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The momentum spectrum of the energetic particle population is determined by
the streaming boundary condition (5.57) at the shock,

�u2
p

3

df .0; p/

dp
C u1

p

3

df .0; p/

dp
C u1 Œf .0; p/ � f .�1; p/� D Q.p/

4�p2
;

where we have used the result u1 Œf .0; p/ � f .�1; p/� D �@f=@x and have
allowed for the injection of Q.p/ particles at the shock per unit momentum per
cm2 s at the shock. This then yields the ordinary differential equation in momentum

p
df

dp
.0; p/C 3u1

u1 � u2
f .0; p/ D 3

u1 � u2

�

u1f .�1; p/C Q.p/

4�p2

�

;

illustrating that the source of the energetic particles is the background particle
population f .�1; p/ convected through the shock and locally injected particles.
Which particle population is more important depends on the relative flux and the
characteristic energies. On solving the equation for the particle spectrum, we obtain
the central result of diffusive shock acceleration theory,

f .0; p/ D 3

u1 � u2
p�q

Z p

pinj

.p0/q
�

u1f .�1; p0/C Q.p0/
4�p02

�
dp0

p0 ; (5.59)

where q D 3r=.r � 1/ and r D u1=u2 is the shock compression ratio. Here, pinj
is the injection momentum. The upper limit on particle momentum is particularly
important if time-dependent particle acceleration is considered, such as at inter-
planetary shock waves where the shock propagation time and evolution need to
be considered carefully since this places constraints on the time available for a
particle to experience acceleration.13 Time dependent diffusive shock acceleration is
discussed below. The spectrum of particles at energies well above the source energy
is therefore a power law / p�q . The characteristic compression ratio for a strong
shock is r D 4 for a gas with adiabatic index �g D 5=3, implying that q D 4, which
is very close to the index of 4.3 inferred for the source of galactic cosmic rays. For
weak shocks, the power law is steeper, indicating fewer high energy particles.

A very important point to note is that the spectral slope of the accelerated particle
spectrum is independent of the details of the scattering process i.e., the diffusion
coefficient, depending only the kinematics of the flow. The reason a power law
results is because the momentum gained by the particle on each shock interaction is
proportional to the momentum it already has and to the probability of its escaping
from the acceleration region. This is very nicely discussed by Bell (1978) from a
microscopic perspective.

In (5.59), the accelerated particle spectrum p�q is formed from the spectrum of
sources at lower momenta p0 < p. If no source of particles is present for momenta
above some pa, then f .0; p/ / p�q for all p > pa. If the spectrum of the source

13Zank et al. (2000).
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is steeper than p�q , then at large p, the accelerated spectrum will still approach
the p�q power law, but if the source is flatter (harder) than p�q , the reaccelerated
spectrum at high energies will have the same slope as the source i.e., the new
spectrum will not reflect the characteristics of the last acceleration. In general then,
a shock with q D 3r=.r � 1/ will produce a power law spectrum with p�q if the
source spectrum is mono-energetic or has a spectral slope steeper than q, but if the
source is harder such that q0 < q, the spectrum tends to p�q0

at large energies
(Exercise).

The basic time scale associated with diffusive shock acceleration is of the
order of �=u2. The importance of the acceleration time scale has to do with
the maximum energy to which a particle can be accelerated by a shock wave.
Observationally, galactic cosmic rays possess a source spectrum that is a power
law �p�4:3 over many decades up until about 1014 eV/nucleon, at which point the
spectrum begins to steepen (the knee). The maximum energy to which a galactic
cosmic ray can be accelerated is related presumably to either the time available
to accelerate the particle (the lifetime of shock wave responsible for particle
acceleration) or to the size of the acceleration region (both of which are possibly
related). Similarly, energetic particles accelerated in solar energetic particle (SEP)
events have a maximum energy. To estimate the maximum energy, whether at a
supernova drive shock wave or at an interplanetary shock requires that we know the
particle acceleration time scale, and that this then be related to, for example, the
characteristic time scale associated with the shock wave.14 To make the estimate for
the time scale of diffusive shock acceleration more precise, we consider a steady
planar shock at which a steady mono-energetic source of particles at the shock is
turned on at t D 0.15 We then seek time dependent solutions of the cosmic ray
transport equation across a discontinuous shock with f .t D 0; x; p/ D 0 and source
Qı.p � p0/ at the shock, located at x D 0. On introducing the Laplace transform

g.s; x; p/ D
Z 1

0

e�st f .t; x; p/dt;

the transport equation upstream (i D 1) and downstream (i D 2) of the shock
becomes

sg C ui
dg

dx
D �i

d2g

dx2
;

assuming for simplicity that � is independent of x. The solutions that satisfy the
boundary condition

g ! 0 as x ! ˙1 are g / exp.ˇix/;

14Zank et al. (2000).
15Axford (1981).
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where

ˇi D ui
2�i

"
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:

The boundary conditions at the shock are given by

Œf � D 0I
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3
u
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@p

�

D �nı.p � p0/;

where the square brackets denote as usual a jump in the enclosed quantity. On
writing g0.s; p/ D g.s; 0; p/ for the Laplace transform of the spectrum at the shock,
we find that

�1ˇ1g0 � �2ˇ2g0 C u1 � u2
3
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dp
D 1

s
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On letting Ai D
q
1C 4�i s=u2i � 1, we can rewrite this as
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which has the solution

g0.s; p/ D 3n
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�

:

By formally inverting the transform, the time-dependent spectrum of accelerated
particles at the shock is given by

f0.t; 0; p/ D 1

2�i

Z i1

�i1
g0.s; p/e

tsds:

To obtain the asymptotic behavior at large times, we consider the contribution of the
simple pole at s D 0, which gives the steady spectrum,

f0.1; 0; p/ D f0.1; p/ D 3n

u1 � u2

�
p

p0

��q
; p � p0; q D 3r

r � 1 ;

in agreement with the steady-state result. Obviously,

f0.t; p0/ D 3n

u1 � u2
D f0.1; p0/:
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At a general time t > 0 and momentum p > p0, we can express the spectrum
formally as

f0.t; p/ D f0.1; p/

Z t

0

�.t 0/dt 0;

where

�.t/ D 1

2�i

Z i1

�i1
exp Œts � h.s/� ds;

and

h.s/ D 3

2

Z p

p0

u1A1 C u2A2
u1 � u2

dp

p
:

The function �.t; p0; p/ is the probability distribution function for the time taken to
accelerate a particle from momentum p0 to p. In fact, since

Z 1

0

�.t/ exp.�ts/dt D expŒ�h.s/�;

and h.0/ D 0, we have that

Z 1

0

�.t/dt D 1;

indicating that the distribution is properly normalized. Hence, expŒ�h.s/� can be
thought of as the moment generating function for �.t/. Recall that to obtain the
mean we can differentiate h.s/ with respect to s and then set s D 0 to obtain an
expression for the mean acceleration time

hti D
Z 1

0

t�.t/dt D @

@s
h.0/

D 3

u1 � u2

Z p1

p0

�
�1

u1
C �2

u2

�
dp

p
: (5.60)

Thus, the important conclusion is that the time scale for the acceleration of particles
of momentum p at a shock not mediated by cosmic rays is simply


acc.p/ D 3

u1 � u2

�
�1

u1
C �2

u2

�

: (5.61)
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Exercises

1. Suppose that an upstream energetic particle distribution proportional to p�a is
convected into a shock with compression ratio r from upstream. In the absence
of particle injection at the shock itself, calculate the reaccelerated downstream
energetic particle spectrum, and explain what happens if a < q D 3r=.r � 1/ or
a > q.

2. Suppose that a shock of compression ratio r accelerates n cm�3 particles injected
as a monoenergetic source ı.p � p0/ at the shock, so producing a downstream
energetic particle spectrum / p�q . Now suppose the shock propagates out
of the system and the compressed gas relaxes back to the ambient state. Let
another shock propagate into the system and suppose that this shock reaccelerates
the decompressed accelerated power law spectrum that was accelerated earlier.
Assume no additional injection of particles into the diffusive shock acceleration
process. Compute the energetic particle distribution reaccelerated at the second
shock. Again, suppose that the second shock disappears out of the system and the
energetic particle decompresses again. Derive the energetic particle spectrum if a
third shock reaccelerates the previously accelerated spectrum of particles. What
can you infer about the effect of multiple accelerations and decompressions of a
spectrum of energetic particles by multiple shock waves?

5.8 Application 2: The Modulation of Cosmic Rays
by the Solar Wind

The fundamental concepts underlying the modulation of galactic cosmic rays by
the solar wind can be developed on the basis of a simplified form of the cosmic
ray transport equation. The solar wind flows supersonically and nearly radially
outward from the sun and carries the heliospheric magnetic field. The large-scale
magnetic field follows the Parker spiral. On smaller scales, as discussed, the solar
wind convects magnetic irregularities – magnetic turbulence – that are responsible
for scattering galactic cosmic rays. The charged particles gyrate about the mean
magnetic field but experience pitch-angle scattering due to the magnetic turbulence,
meaning that the cosmic ray transport equation is a suitable description of particle
transport for galactic cosmic rays attempting to enter the heliosphere. That cosmic
rays experience scattering in the outwardly flowing solar wind means that they
experience considerable difficulty in reaching the inner heliosphere. Consequently,
the intensity of cosmic rays in the inner heliosphere will be much lower than in the
outer heliosphere.

To ensure a tractable description, consider the cosmic ray transport equation in
the absence of a large-scale magnetic field and adopt a 1D spherically symmetric
geometry. For a constant radial solar wind speed u, the steady-state spherically
symmetric 1D cosmic ray transport equation becomes
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u
@f

@r
� p

3

1

r2
@.r2u/

@r

@f

@p
D 1

r2
@

@r

�

r2�rr
@f

@r

�

;

where �rr denotes the radial diffusion coefficient and f D f .t; r; p/. This form
of the transport equation does not have a simple analytic equation and is typically
solved numerically for appropriate solar wind conditions. The transport equation
can be rewritten as

r2u
@f

@r
C @.r2u/

@r
Cf D @

@r

�

r2�rr
@f

@r

�

;

where the Compton-Getting factor C has been introduced,

C 
 �p
3

1

f

@f

@p
:

The Compton-Getting coefficient has been extensively studied, although not initially
in the context of an expression in the cosmic ray transport equation. For galactic
cosmic rays, C is a slowly varying function of r and p, and it may be approximated
as C D 1 in the energy regime appropriate to cosmic ray modulation. Subject to
this approximation, the transport equation reduces to

d

dr

�

r2
�

uf � �rr df
dr

��

D 0:

The equation in the inner brackets is simply

df

dr
D u

�rr
f;

which has the solution

f .r; p/ D f .1; p/ exp

�

�
Z R0

r

u

�rr
ds

�

;

where f .1; p/ is the isotropic galactic cosmic ray distribution function beyond the
heliosphere and R0 is the radius of the modulation region – this is sometimes called
the cosmic ray modulation boundary but it has little physical motivation within
this formulation. The modulation of galactic cosmic rays within the heliosphere
is therefore controlled by the modulation parameter

˚CR D
Z R0

r

u

�rr
ds;

which is a function of the solar wind properties through the solar wind radial speed
u, and hence of the 11-year solar cycle. Consequently, the cosmic ray intensity
exhibits a solar cycle variation.



References 259

References

M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1974)
W.I. Axford, in Proceedings of the 10th Texas Symposium on Relativistic Astrophysics, Baltimore,

1981. Annals of the New York Academy of Sciences, vol. 375, pp. 297–313
W.I. Axford, E. Leer, G. Skadron, in Proceedings of the 15th International Cosmic Ray Conference,

Plovdiv, 1977, vol. 11, pp. 132–137
G.K. Batchelor, The Theory of Homogeneous Turbulence (Cambridge University Press, Cam-

bridge, 1953)
J.W. Belcher, L. Davis, J. Geophys. Res. (Space) 76, 3534 (1971)
A.R. Bell, Mon. Not. R. Astron. Soc. 182 147–156 (1978)
R.D. Blandford, J.P. Ostriker, Astrophys. J. 221, L29–L32 (1978)
P.J. Coleman, Astrophys. J. 153, 371 (1968)
S. Corrsin, Progress report on some turbulent diffusion research, in Atmospheric Diffusion and Air

Pollution, ed. by F. Frenkiel, P. Sheppard. Advances in Geophysics, vol. 6 (Academic, New
York, 1959)

L.O’C. Drury, An introduction to the theory of diffusive shock acceleration of energetic particles
in tenuous plasmas. Rep. Prog. Phys. 46, 973–1027 (1983)

L.O’C. Drury, S.A.E.G. Falle, Mon. Not. R. Astron. Soc. 223, 353 (1986)
M.A. Forman, G.M. Webb, Acceleration of energetic particles, in Collisionless Shocks in the

Heliosphere: A Tutorial Review, ed. by R.G. Stone, B.T. Tsuratani. Monograph, vol. 34,
(American Geophysical Union, Washington, DC, 1985), pp. 91–114

P.A. Isenberg, A hemispherical model of anisotropic interstellar pickup ions. J. Geophys. Res. 102,
4719–4724 (1997)

J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1975)
A.N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large

Reynolds number. Dokl. Akad. Nauk. SSSR 30, 310 (1941)
G.F. Krymsky, Sov. Phys.-Dokl. 23, 327 (1977)
J.A. le Roux, G.M. Webb, Nonlinear cosmic ray diffusive transport in combined two-dimensional

and slab magnetohydrodynamic turbulence: a BGK-Boltzmann approach. Astrophys. J. 667,
930 (2007)

J.A. le Roux, G.M. Webb, A focused transport approach to the time-dependent shock acceleration
of solar energetic particles at a fast traveling shock. Astrophys. J. 746, 104 (2012)

J.A. le Roux, G.P. Zank, L.J. Milan, W.H. Matthaeus, Energetic charged particle transport and
energization in dynamic two-dimensional turbulence. Astrophys. J. 602, 396 (2004)

W.H. Matthaeus, C.W. Smith, Structure of correlation tensors in homogeneous anisotropic
turbulence. Phys. Rev. A 24, 2135 (1981)

W.H. Matthaeus, G. Qin, J.W. Bieber, G.P. Zank, Nonlinear collisionless perpendicular diffusion
of charged particles. Astrophys. J. 590, L53 (2003)

J. Skilling, Cosmic rays in the galaxy: convection or diffusion? Astrophys. J. 170, 265 (1971)
A. Shalchi, Nonlinear Cosmic Ray Diffusion Theories. Astrophysics and Space Science Library

(Springer, Berlin/Heidelberg, 2009). doi:10.1007/978-3-642-00309-7-2
A. Shalchi, J.W. Bieber, W.H. Matthaeus, Analytic forms of the perpendicular diffusion coefficient

in magnetostatic turbulence. Astrophys. J. 604, 675 (2004)
R.C. Tautz, I. Lerche, Magnetic field line random walk in non-axisymmetric turbulence. Phys. Lett.

A 375, 2587–2595 (2011)
G.M. Webb, Astron. Astrophys. 127, 97 (1983)
G.P. Zank, Oscillatory cosmic ray shock structures. Astrophys. Space Sci. 140, 301–324 (1988)
G.P. Zank, J.F. McKenzie, Short-wavelength compressive instabilities in cosmic ray shocks and

heat conduction flows. J. Plasma Phys. 37, 347–361 (1987)
G.P. Zank, W.I. Axford, J.F. McKenzie, Instabilities in energetic particle modified shocks. Astron.

Astrophys. 233, 275–284 (1990)



260 5 Charged Particle Transport in a Collisionless Magnetized Plasma

G.P. Zank, W.K.M. Rice, C.C. Wu, Particle acceleration at coronal mass ejection driven shocks: a
theoretical model. J. Geophys. Res. (Space) 105(A11), 25079–25095 (2000)

G.P. Zank, G. Li, V. Florinski, W.H. Matthaeus, G.M. Webb, J.A. le Roux, Perpendicular diffusion
coefficient for charged particles of arbitrary energy. J. Geophys. Res. (Space) 109, A04107
(2004)

G.P. Zank, G. Li, V. Florinski, Q. Hu, D. Lario, C.W. Smith, Particle acceleration at perpendic-
ular shock waves: model and observations. J. Geophys. Res. (Space) 111, A06108 (2006).
doi:10.1029/2005JA011524



Chapter 6
The Transport of Low Frequency Turbulence

The transport of particles experiencing collisions with either other particles or with
magnetic turbulence has been considered in the previous chapters. It is possible
to utilize related techniques to investigate the transport of fields as well. Not
surprisingly, the question of identifying appropriate closures becomes especially
acute when considering the transport of fluctuating fields, and this is an enormous
area of past and current research and we cannot begin to provide even the most
cursory overview.1 Instead, we shall focus on the transport of magnetized turbulence
in an inhomogeneous flow such as a solar or stellar wind and utilize some quite
simple closure approximations.

From almost the earliest times of spacecraft observation of the solar wind, there
was strong evidence suggesting that fluctuations in the interplanetary medium could
be interpreted in terms of a low frequency magnetohydrodynamic description. Fur-
thermore, in a classic paper, Coleman (1968) found that spacecraft frame temporal
fluctuations of the solar wind plasma velocity admitted power law spectral distri-
butions, which in view of the super-Alfénic character of the mean interplanetary
outflow from the Sun and the Taylor “frozen-in flow” condition, implies a power law
distribution in wave number space very reminiscent of the Kolmogorov description
of hydrodynamic turbulence. By contrast, related observations by Coleman (1968)
and Belcher and Davis (1971) showed that velocity and magnetic field fluctuations
are often highly correlated, suggesting the presence of low-frequency MHD waves
propagating outward in the solar wind.

The above two sets of observations have more-or-less defined the two competing
and conflicting interpretations of fluctuations in the solar wind. On the one hand,
the existence of Kolmogorov-like spectra in solar wind magnetic field observations
has been interpreted in terms of the in situ generation of a turbulent cascade by

1Very useful overviews can be found in e.g., McComb (1990), Frisch (1995), and Chassaing et al.
(2002).

G.P. Zank, Transport Processes in Space Physics and Astrophysics, Lecture Notes
in Physics 877, DOI 10.1007/978-1-4614-8480-6__6,
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dynamical processes2 suggesting that the solar wind is an evolving turbulent flow,
driven by the injection of turbulent energy by processes such as stream shear,
shock waves, pick-up of particles, etc. In marked contrast to this tangled, highly
nonlinear picture of fluctuations in the interplanetary medium, the observations of
Belcher and Davis suggested instead a picture corresponding to superimposed, non-
interacting MHD waves, primarily Alfvénic, that are probably remnants of coronal
processes.

The Alfvén mode description was for a long time the most widely accepted
perspective until further sophisticated and detailed observations were presented
which could be interpreted only on the basis of a turbulent solar wind. It was
found for example that on average the frequency of occurrence of Alfvénic periods
is greatest in the inner heliosphere, after which it decreases substantially with
increasing heliocentric distance. By �2 AU, as many “inwardly” as “outwardly”
propagating fluctuations are observed. This is interpreted as a consequence of the in
situ generation of turbulence by stream shear-driving and the dynamical evolution
and coupling of fluctuations. Other dynamically changing quantities include the
decrease of the “Alfvén ratio,” the ratio of kinetic to magnetic energy in fluctu-
ations, with increasing heliocentric distance, the tendency of the “cross helicity”
to approach zero, indicating that the energy in inward and outward propagating
modes approaches equality. Another critical observation is the non-adiabatic radial
temperature of the solar wind, and this has long been interpreted as evidence for
heating by turbulent dissipation or possibly shock waves. This led to growing
consensus that the solar wind was an excellent example of a turbulent magnetofluid.
However, the major advantage of the linear wave description was the development
of an extremely tractable and simple theory describing the radial evolution of solar
wind fluctuations. This was based on small amplitude or linear wave propagation in
a slowly varying inhomogeneous background, for which a JWKB (Jeffreys-Wentzel-
Kramers-Brillioun) expansion approach could be used, and is thus generally called
the WKB theory. Despite the inability of WKB theory for linear Alfvén waves to
explain observed turbulence properties of the interplanetary medium, it nonetheless
proved remarkably accurate in describing the evolution of fluctuating magnetic
power with increasing heliocentric distance, at least within about 8 AU. The
apparent agreement between WKB theory and the observed heliocentric evolution of
magnetic power provides perhaps the most striking argument in its favor. However,
the lack of equipartition between magnetic and kinetic energy fluctuations and the
observation that fluctuations become progressively less Alfvénic with increasing
heliocentric distance casts doubt on the relevance of the WKB description. A
resolution to these fundamental contradictions, at least for the outer heliosphere, was
presented by Zank et al. (1996) and more modern models now extend this approach
to all regions of the heliosphere.

2Matthaeus and Goldstein (1982).
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6.1 Basic Description of Low-Frequency Turbulence

The development of turbulence models has been based largely on hydrodynamics
in the incompressible regime. Here we very briefly review standard ideas about
hydrodynamic turbulence based on the Kolmogorov theory, and apply this to
magnetohydrodynamic turbulence.

Hydrodynamic turbulence proceeds primarily on the basis of the continuity and
the Navier-Stokes form of the momentum equation in the limit of incompressibility.
This reduces the governing equations to

r � u D 0I (6.1)

@u
@t

C u � ru D �r
�
P

�

�

C �r2u: (6.2)

In the incompressible formulation of hydrodynamics, the pressure P behaves as a
passive scalar that is determined from the Poisson equation that results from taking
the divergence of the momentum equation (6.2). Despite their apparent simplicity,
the quadratic nonlinearity of the incompressible equations (6.1) and (6.2) admit no
known general solution. The advection term introduces nonlinearity into the system,
which can correspond to wave steepening and energy transfer e.g., suppose u /
sin kx. Then, u�ru � sin kxk cos kx D k sin 2kx. Thus, the wave number doubles.
An eddy with vorticity ! 
 r � u is enhanced by advection, and this is termed as
vortex stretching.

We have seen that the Reynolds number Re is the magnitude of the advection to
dissipation term,

Re D ju � ruj
j�r2uj ' U 2=L

�U=L2
D UL

�
;

where U and L denote the characteristic speed and length scale of the flow. The
transition from laminar to turbulent flow corresponds to the transition from low
Reynolds number flow to high Reynolds number flow.

Because of the quadratic nonlinearity, two modes can interact with one another
to excite another. The mode-mode coupling leading to the excitation of a high
frequency or larger wave number mode can proceed successively in the sense of
a cascade. This concept of energy transfer from large to short scales is analogous to
the physical picture introduced by Richardson in which large-scale eddies separate
into smaller eddies, and so on into ever smaller eddies. Since energy migrates or
cascades from larger scales to smaller scales, there does not exist a characteristic
size for the eddies since all scales exist simultaneously. Such a cascade description
can only be valid if there is a well separated region in which energy is deposited
into the system. There also has to be well separated region in which nonlinearity
and dissipation are comparable. In this regime, the nonlinear coupling and the
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dissipation proceed at the same rate, or dissipation begins to dominate, and leads
to the conversion of kinetic energy to thermal energy.

In his classic analysis,3 Kolmogorov separated the spectral range of turbulence
into three spatial regimes, these being the injection or energy range, the inertial
range, and the dissipation range, as illustrated in Fig. 5.2.

The smallest wave number regime (largest scales) is the injection or energy
range, and corresponds to the regime in which turbulent energy is deposited. In
the solar wind, this can be at frequencies as low as the 27 day solar rotation period,
it can be due to the turbulence generated by shear and instabilities at the boundary
regions of fast and slow streams, to the fluctuations excited by the creation of pickup
ions, and sundry other instabilities. The energy range is the energetically dominant
part of the fluctuation spectrum.

At the smallest scales, corresponding to wave numbers greater than some
characteristic dissipation wave number kd , the dissipative process due to the fluid
viscosity dominates and fluctuation energy is converted to thermal energy. This
regime is called the dissipation range. The spectral energy experiences a sharp
decrease and steepening of the spectrum in the dissipation range.

Kolmogorov’s key insight was to recognize that the inertial range that lies
between the energy-containing and dissipation ranges results from the balancing
of energy input into the inertial range and energy loss into the dissipation range. Let
us examine this idea more closely in the context of hydrodynamics and MHD.

For hydrodynamics, we may consider the incompressible momentum equa-
tion (6.2), and for the energy-containing and inertial range, we can neglect the
viscosity. We also neglect the thermal pressure. We therefore have

@u
@t

D �u � ru D NL;

where NL denotes the nonlinear term. Let the energy-containing eddies possess a
characteristic velocity hu2i1=2 and length `. The characteristic decay time due to
nonlinear spectral transfer is then


nl � hu2i1=2
`

:

For the kinetic energy in the fluctuations,

1

2

@

@t
.u2/ D �u � .u � ru/;

we may approximate the triple correlation time by hu2i1=2hu2i=`, which yields

d

dt
hu2i ' �hu2i3=2

`
;

3Kolmogorov (1941a,b).
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where the constant 2 has been absorbed into `. This is the well-known Kolmogorov
estimate for the turbulent decay of energy-containing eddies.

The analogous form of the “decay” or non-linear spectral time is rather more
subtle and complicated for a magnetized gas in the presence of a mean magnetic
field and inhomogeneous large-scale background flow. The identification and
relationship of the various characteristic non-linear spectral and fluctuation time
scales has been addressed for incompressible MHD by many authors.4 Recall that
for incompressible MHD, the introduction of the variables

Z˙ 
 U ˙ B=
p
4��;

(using the exact quantities now and not the fluctuating part) allows the fully 3D
incompressible MHD equations to be expressed exactly as

@Z˙

@t
C Z� � rZ˙ D �1

�
r
�

P C B2

8�

�

; (6.3)

after adding and subtracting the momentum and Faraday’s equation respectively.
Assume that the dissipation of magnetized fluctuations or turbulence is local and in
approximate local statistical (quasi-)equilibrium on sufficiently small scales and that
the system is locally homogeneous. By separating Z˙ into a mean and fluctuating
part, Z˙ D Z0̇ C z˙, we have locally

@z˙

@t
C Z�

0 � rz˙ D �z�rz˙: (6.4)

On neglecting the convection term in (6.4) above, we obtain

@

@t

D
zC2

E
D �2 ˝zC � �z� � rzC�˛

' �
D
zC2

E ˝z�2˛1=2

�C ; (6.5)

by analogy with the von Karman-Howarth-Batchelor one-point closure for hydro-
dynamics (after absorbing the factor of 2). The non-linear spectral transfer term
therefore couples the decay of the energy in the forward modes to those in the
backward propagating modes via a characteristic scale length associated with the
z˙ modes. Similarly, in the absence of convection or zero-order propagation effects,

@

@t

˝
z�2˛ ' � ˝z�2˛

D
zC2

E1=2

�� :

4See the review by Zhou et al. (2004).
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Consequently, the non-linear term due to spectral transfer in the absence of
propagation effects is

NL˙ D �z˙

D
z�2

E1=2

�˙ ; (6.6)

with a characteristic “eddy turn-over” time

1


ṅl
�
D
z�2

E1=2

�˙ : (6.7)

The length scale �˙ will correspond essentially to the correlation length of the
energy in the forward and backward propagating Elsässer variables.

The modeling of the non-linear term is further complicated by the inclusion of
propagation effects.5 There are several subtleties with propagation effects that are
not easily addressed. Alfvén wave propagation introduces an Alfvénic time scale

1


Ȧ
� jVA0j

�˙
k
: (6.8)

The time scale (6.8) yields the well-known Iroshnikov-Kraichnan spectrum for
the energy density of the forward and backward propagating Elsässer fluctuations
whereas the non-linear time scale implies a Kolmogorov spectrum for the energy in
the zC and z� modes. This is seen as follows.

Use of the non-linear and Alfvén time scales 
ṅl and 
Ȧ yields the Kol-

mogorov and Iroshnikov-Kraichnan energy density spectra for
D
zC2

E
and

˝
z�2˛

directly.6 Recall that by making the Kolmogorov assumption that the energy flux D
dissipation rate D ".k/, one has for a hydrodynamical system that " � u3=`, where
u is a characteristic velocity fluctuation and ` a characteristic length scale. If we
introduce a characteristic triple correlation time 
3, we may write " ' 
3u4=`2.
Since uk � .kEk/

1=2, where Ek is the energy per unit wavelength, we may express

".k/ ' 
3E
2
k.k/k

4: (6.9)

By adopting the dimensional scaling (6.9), and identifying the relevant triple
correlation time 
3, we can recover either the Kolmogorov or Iroshnikov-Kraichnan
forms of the energy spectrum provided " D constant. For example, if we assume that

5Iroshnikov (1963) and Kraichnan (1965).
6An excellent and much more extensive discussion can be found in Appendix A of Zhou et al.
(2004)
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the non-linear time scale describes 
3, i.e., 
�1
3 D kuk , then we obtain immediately

the Kolmogorov spectrum for the inertial range

Ek ' "2=3k�5=3; (6.10)

whereas taking 
�1
3 D kVA0 yields the Iroshnikov-Kraichnan spectrum

Ek ' ."VA0/
1=2 k�3=2: (6.11)

It is possible to use a more complicated form of the triple correlation time scale
�

3̇
��1 D �


ṅl
��1 C �


Ȧ
��1

to obtain a spectrum Ek̇ that yields features of both
the Kolmogorov and Iroshnikov-Kraichnan scalings in different regimes.

A generalization7 of (6.9) is

"˙.k/ ' 
3̇
�
EC
k .k/

� �
E�
k .k/

�
k4: (6.12)

Use of the non-linear time scale above for 
3̇ yields the Kolmogorov spectrum

Ek̇ D �
"˙=."�/1=2

�4=3
k�5=3; (6.13)

together with the ratio,

EC
k =E

�
k D �

"C="��2 : (6.14)

Unlike the scaling used above, use of the Alfvén time scale yields instead

EC
k E

�
k D VA0"

Ck�3; EC
k E

�
k D VA0"

�k�3: (6.15)

The individual spectra then satisfy EC
k ' kmC and E�

k ' km� provided mC C
m� D �3. However, there is no expectation that the Iroshnikov-Kraichnan �3=2
spectrum will emerge for either the forward or backward energy spectra, and there
is no estimate for the ratio of spectral energies EC

k =E
�
k .

6.2 Mean Field Description of MHD Fluctuations

Let us now consider the transport of fluctuations in an expanding magnetized flow.
To a leading order, low-frequency approximation, the solar wind may be described

adequately on the basis of the MHD equations. A mean field decomposition of

7Dobrowonly et al. (1980a,b)
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the MHD equations in the presence of an inhomogeneous large-scale flow will be
utilized.8 The compressible MHD equations are

@�

@t
C r � �u D 0I

@u
@t

C u � ru D �1
�

r
�

P C B2

4�

�

C 1

4��
.B � r/BI

@B
@t

C u � rB D .B � r/ u � .r � u/B;

and of course r � B D 0 and we have used J D .c=4�/r � B. Observe that we can
identifyPT 
 PC B2

4�
as the total pressure, whereP is the thermal plasma pressure.

The solar wind, as indeed most flows, varies relatively smoothly on large scales
associated with the local heliocentric radial coordinate R. Fluctuations typically
possess correlation scales that are much smaller than R. Most of the turbulence
“activity” occurs on scales that are smaller than a characteristic correlation length
scale and hence significantly less than heliocentric length scales R. The MHD
turbulence activity that we wish to explore is therefore well separated in length scale
from the large-scale solar wind inhomogeneity, which is essentially reproducible
and can be described in terms of mean field variables. By contrast, the small-scale
fluctuating fields behave as random variables and so require a statistical description.
Accordingly, we decompose the fields according to

u D U C uI B D B0 C bI � D �0 C ı�I PT D PT
0 C ıpT ;

where the existence of an appropriate averaging operator is assumed such that
hui D U, hBi D B0, h�i D �0, and hPT i D PT

0 . The mean fields correspond to the
large-scale inhomogeneity. Because of the inhomogeneous background, we need to
regard the spatial coordinate X as comprising both a slowly varying part R and a
local rapidly varying coordinate x.9 Formally, the averaging operator h� � � i averages
over x at a fixed R, and hence no fast variations remain after averaging i.e.,

@

@xi
hF.R; x/i D 0;

for each component xi and any function F . Similarly, we also require that the
average of any quantity vanish whenever that quantity may be written as a derivative
with respect to the fast coordinate i.e.,

8This approach for solar wind fluctuations was developed in a series of papers by Ye Zhou, W.H.
Matthaeus, C.-Y. Tu, and E. Marsch (Zhou and Matthaeus 1990, 1999; Matthaeus et al. 1994;
Marsch and Tu 1989; Tu and Marsch 1990).
9For a very detailed discussion of a two-scale separation applied to the inhomogeneous MHD
equations, see Hunana and Zank (2010).
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�
@F

@xi

�

D 0;

for any F and each xi . This ensures that a quantity such as

hrF i D @F

@R

can be regarded as a slowly varying spatial gradient of the locally averaged value of
the function F .

A common assumption adopted in turbulence modeling is to assume that small
scale fluctuations are incompressible, so that the mean density �0 varies slowly and
ı� D 0. The fluctuating velocity field becomes solenoidal i.e.,

r � u D 0:

The validity of the incompressible description in both hydrodynamics and MHD
has been examined only recently10 and is quite subtle, particularly for MHD. In
essence, all high frequency fluctuations must vanish if the compressible equations
are to converge properly to an incompressible description.

The fast scale averaged equations are easily derived from the momentum and
induction equations, yielding

@U
@t

C U � rU C hu � rui � 1

4��0
ŒB0 � rB0 C hb � rbi� D �rPT

0 I

@B0
@t

C U � rB0 C hu � rbi � ŒB0 � rU C hb � rui�
D � Œ.r � U/B0 C h.r � u/bi� :

Recall that the fluctuating velocity field is denoted by u. The fast-scale equations
describing the fluctuating fields are obtained by subtracting the above equations
from the original momentum and induction equations. The turbulent velocity and
magnetic fields are governed by

@u
@t

C U � ru C u � rU � 1

4��0
ŒB0 � rb C b � rB0� D � 1

�0
rıpT C NuI

(6.16)

@b
@t

C U � rb C u � rB0 � B0 � ru � b � rU D � .r � U/ b

� .r � u/B0 C NbI (6.17)

10Zank and Matthaeus (1991, 1993).
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where

Nu D � Œu � ru � hu � rui�C 1

4��0
Œb � rb � hb � rbi� I (6.18)

Nb D � Œu � rb � hu � rbi�C Œb � ru � hb � rui� : (6.19)

The equations for the mean field and fluctuating density are given by

@�0

@t
C r � .�0U C hı�ui/ D 0I

@ı�

@t
C r � .ı�U C �0u C ı�u � hı�ui/ D 0:

The assumption of incompressibility then yields the constraint

r � .�0u/ D 0: (6.20)

Since the small-scale field is assumed to be incompressible, we have

rx � u D 0;

where the divergence is with respect to the fast-scale variable x. On slow scales,
r � u ¤ 0 since this would violate the constraint (6.20). The small scale divergence
can be neglected in the transport equation for b, i.e., on the right-hand-side of (6.17).

The spatial derivatives in the equations for the dynamical small-scale variables u
and b, (6.16) and (6.17), contain both slow and fast scale variation. We assume that
the variables are functions of both the R and x, e.g.,

f D f 0.R; x; t /C "f 1.R; x; t /C "2f 2.R; x; t /C � � � ;

and introduce the multiple scales

R D X; x D X
"

H) ri D @

@Ri
C 1

"

@

@xi
;

where " is a small parameter. Let rR 
 @=@R and rx 
 @=@x. The Equations (6.16)
and (6.17) can be combined as a single equation with the introduction of the Elsässer
variables

z˙ D u ˙ bp
4��0

:

The second term is the fluctuating magnetic field expressed in Alfvén speed units.
The Elsässer variables can be interpreted as forward (the positive) and backward
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(the negative) propagating modes. The large-scale magnetic field can be expressed
similarly in terms of the Alfvén velocity

VA D B0p
4��0

:

The Elsässer variables are very convenient in studying incompressible MHD
turbulence since r � z˙ D 0 (although this is not in general true for compressible
turbulence). In the present context of fast- and slow time variation, rx � z˙ D 0 but

r � z˙ D rR � u � 1

2

bp
4��0

� rR ln �0 ¤ 0;

where we have used r � b D 0. The slowly varying inhomogeneous background
therefore ensures that, despite the assumed incompressibility of the small-scale fluc-
tuations, the Elsässer variables are not solenoidal. Before combining the dynamical
equations, we note the following relations,

U
�0

� r�0 D �r � UI

U � r 1p
4��0

D 1p
4��0

r � U
2

I

B0 � r 1p
4��0

D r � VA;

where we assumed that the background density �0 was steady. On using the results
above, Eqs. (6.16) and (6.17) can be combined in terms of the Elsässer variables as
(Exercise)

@z˙

@t
C .U � VA/ � rz˙ C z˙ � z�

2
r � .U=2˙ VA/C z� �

�

rU ˙ rBp
4��0

�

D NL˙ C S˙

which is equivalent to

@z˙

@t
C .U � VA/ � rz˙ C 1

2
r � .U=2˙ VA/ z˙ C z� �

�

rU ˙ rBp
4��0

� 1

2
Ir � .U=2˙ VA/

�

D NL˙ C S˙; (6.21)

where I is the identity matrix. NL˙ are nonlinear terms that we shall later model
as dissipation terms, and

NL˙ D Nu ˙ 1p
4��0

Nb:
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Note that in (6.21), the total pressure gradient rpT has been neglected. This is
due in part to the assumption of small scale incompressibility. In an incompressible
hydrodynamic or MHD fluid, the pressure is a constraint, determined by the solution
to the divergence of the incompressible momentum equation (a Poisson equation),
and is determined by a combination of the fluid velocity and magnetic pressure.
Thus, correlations that include the pressure will be of the third-order and similar
therefore to the terms contained in NL˙. Since we will model correlations of the
nonlinear terms on the right-hand-side of (6.21), we do not include the total pressure
explicitly.

Exercises

1. Complete the derivation of the transport equation for the Elsässer variables z˙,
Eq. (6.21).

6.3 The Transport Equation for the Magnetic Energy Density

We will follow the original derivation given in Zank et al. (1996). although this has
been extended recently by Breech et al. (2008) and Zank et al. (2012). Although we
will not use all the following notation, these are quantities that appear typically in
the analysis of turbulence in the solar wind, both observationally and theoretically.
These quantities correspond to taking moments of the Elsässer variables in much
the same way that we took moments of the particle distribution functions. There is
a corresponding closure problem since the nonlinear terms introduce higher order
moments in each derivation of a moment equation.

Introduce the following important moments of the Elsässer variables:

ET 
 hzC � zCi C hz� � z�i
2

D hu2i C hb2=4��0iI (6.22)

EC 
 hzC � zCi � hz� � z�i
2

D hu � b=
p
4��0iI (6.23)

ED 
 hzC � z�i D hu2i � hb2=4��0i; (6.24)

where the first is twice the total energy in the fluctuations (the sum of kinetic
and magnetic energy), the second is the cross helicity, the difference in energy
between the forward and backward propagating modes, and the energy difference
i.e., the difference between twice the fluctuation kinetic energy and magnetic energy
(measured in Alfvén speed units) densities, sometimes called the residual energy.
These are all useful and measurable quantities describing turbulence in the solar
wind. By combining the moments, (6.22)–(6.24), we also have the following useful
relations,
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rA 
 hu2i
hb2=4��0i D ET CED

ET �ED I

hzC2i D ET CEC I hz�2i D ET �EC I

HC D EC

ET
I HD D ED

ET
I

hu2i D ET CED

2
I hb2=4��i D ET �ED

2
:

Here rA denotes the Alfvén ratio, andHC andHD are the normalized cross-helicity
and energy difference or residual energy respectively.

A very general set of transport equations can be derived from (6.21) in terms of
the above moments together with correlation length equations. The physical content
is sometimes difficult to extract, so we make the following assumptions that are
quite reasonable beyond some 1–2 AU in the solar wind.

1. The Alfvén ratio is assumed to be constant i.e., the ratio of kinetic to magnetic
energy in fluctuations is constant. This is quite well supported observationally in
the solar wind for suitably large heliocentric distances from the Sun.

2. The cross-helicity is assumed to be zero i.e., the energy in inward and outward
propagating modes is equal.

3. We introduce a structural similarity hypothesis that essentially imposes specific
symmetries on the turbulence in the sense that non-diagonal correlations can be
expressed as a linear function of the trace of the corresponding correlation tensor
i.e., we approximate the product z�i z

�
j D az� � z� where a is a scalar constant and

� and � can be C or �. This assumption amounts to a closure assumption since it
relates certain unknown moments to the smaller subset (6.22)–(6.24). Unlike the
other assumptions above, it does not appear possible to weaken this assumption
in the more general theory of Zank et al. (2012).

4. One further assumption is needed, this related to the ratio of the velocity and
magnetic field fluctuation correlation lengths, but we defer further discussion
until the appropriate section.

In the transport equation for the Elsässer variables z˙, we express

1p
4��

�
z� � rB

� D z� � VA C 1

2
VA

1

�
z� � r�:

An evolution equation for ET can be constructed (by taking the dot product of
the evolution equation for z˙ with z˙ i.e., z˙ � @z˙=@t etc. and then adding the two
equations – Exercise) which yields

@ET

@t
C U � rET C 1

2
r � UET � VA � rEC C r � VAEC C h.z� � rU/ � zCi

C h.zC � rU/ � z�i C h.z� � rVA/ � zCi � h.zC � rVA/ � z�i
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C 1

2

1

�

	h�VA � zC� .z� � r�i/ � h.VA � z�/
�
zC � r�i�
 � 1

2
r � UED

D hzC �NLCi C hz� �NL�i C hzC � SCi C hz� � S�i; (6.25)

where turbulence source terms S˙ have been introduced.
To deal with the mixed terms, we invoke the structural similarity hypothesis and

approximate zC
i z�

j D azC � z� for some constant a. Notice that

zC
i z�

j � z�
i zC

j D 2

�
bip
4��0

uj � bjp
4��0

ui

�

so if the fluctuations are purely Alfvénic, the coefficients introduced by the mixed
terms vanish identically.

By considering specific terms, the structural similarity hypothesis implies

.z� � rU/ � zC C .zC � rU/ � z� D 2az� � zCr � U C 2az� � zCSu
x I

.z� � rVA/ � zC � .zC � rVA/ � z� D 0I
	h�VA � zC� .z� � r�i/ � h.VA � z�/

�
zC � r�i�
 D 0;

where Su
x D P

i;j Ii¤j @Ui=@xj is the sum of shear velocity gradient terms. This
then yields the total energy density transport equation in the form

@ET

@t
C U � rET C 1

2
r � UET � VA � rEC C r � VAEC

C
�

2a � 1

2

�

r � UED C 2aSu
xED

D hzC �NLCi C hz� �NL�i C hzC � SCi C hz� � S�i: (6.26)

The nonlinear dissipation terms are evaluated separately below. The first three terms
describe the WKB-like transport terms that arise in linear wave theory, and exhibit
a form that resembles a thermal pressure equation with adiabatic index 1/2. The
remaining terms describe the mixing of the forward and backward Elsässer modes
due to large scale inhomogeneity of the background plasma flow associated with
expansion/compression, and shear terms. As expressed in the transport equation, this
coupling is through the cross-helicity energy density EC and the energy difference
ED terms.

To simplify this equation further, as discussed above, we assume that the cross-
helicity EC D 0, and that the Alfvén ratio is constant. Hence, using the relations

ET D hu2i C hb2=4��0i D hb2=4��0i
� hu2i

hb2=4��0i C 1

�

D Eb.rA C 1/I
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HD D ED

ET
D hu2i � hb2=4��0i

hu2i C hb2=4��0i D rA � 1
rA C 1

) ED D HDET D rA � 1
rA C 1

ET ;

reduces the transport equation (6.26) to

@Eb

@t
C U � rEb C 1

2
r � UEb C

�

2a � 1

2

�

r � UHDEb C 2aSu
xHDEb

D hzC �NLCi C hz� �NL�i C hzC � SCi C hz� � S�i: (6.27)

Neglect of the right-hand-side of (6.26) and the mixing term proportional to HD

yields the WKB equation

@Eb

@t
C U � rEb C 1

2
r � UEb D 0;

for the magnetic energy density in linear magnetic fluctuations hb2=4��0i in the
solar wind.

Exercises

1. Complete the derivation of the transport equation for ET , Eq. (6.25) and hence
derive the final form of the transport equation (6.26).

2. Solve the steady-state WKB equation for the energy density of magnetic field
fluctuations

@Eb

@t
C U � rEb C 1

2
r � UEb D 0;

in a steady spherically symmetric steady flow for which U D U0 Or, U0 D const.,
�0 D �00.R0=r/

2 where �00 is the density at a heliocentric distance R0, and
hence show that b2=b20 D .R0=r/

3.

6.4 Modeling the Dissipation Terms

Consider now the nonlinear terms that describe dissipation on the right-hand-side of
the transport equation (6.26) or (6.27). We adopt a simple one-point closure model
for energy decay similar to those used in hydrodynamics. The analysis here is a little
more general than that given in Zank et al. 1996. As discussed above, assume that
the non-linear decay terms are exponential in form with an appropriate non-linear
spectral cascade time 
ṅl i.e.,

NL˙ / z˙


ṅl
:
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The constant of proportionality is of order unity but we do not worry about this for
the present. Since the spectral cascade is mediated by energy in oppositely directed
modes, we assume that

1


ṅl
�
ˇ
ˇz�ˇˇ
�˙ ;

and �˙ is a characteristic length scale consistent with the one-point closure, and
will correspond essentially to a correlation length for the energy in the forward and
backward propagating Elsässer variables.

From the evolution equation for the total energy ET ,

Dissipation term D �hzC �NLCi � hz� �NL�i

D � zC2

�C jz�j � z�2

��
ˇ
ˇzCˇˇ

D � �E2
T �E2

C

�1=2
"
.ET CEC /

1=2

�C C .ET �EC /1=2
��

#

:

If we assume that EC D 0 again, the dissipation term reduces to the simpler form

Dissipation term D �E3=2

b

�
1

�C C 1

��

�

D �E
2
b

�
: (6.28)

To close the turbulence model, the dynamical behavior of � needs to be
determined. We proceed by analogy with Batchelor (1953) and introduce three
correlation lengths through the covariances

LT 

Z
�hzC � zC0i C hz� � z�0i� dr D �hzC � zCi C hz� � z�i��T

D
�ˇ
ˇzCˇˇ2 C jz�j2

�
�T D 2ET �

T I

LC 

Z
�hzC � zC0i � hz� � z�0i� dr D �hzC � zCi � hz� � z�i��C

D
�ˇ
ˇzCˇˇ2 � jz�j2

�
�C D 2EC�

C I

LD D
Z

hzC � z�0 C zC0 � z�idr D ED�
D;
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Note that the prime denotes the spatially lagged Elsässer variable in the coordinate
r , which unfortunately introduces a particular direction since the translation is
along one particular Cartesian direction. By using, for example, zC � @zC0=@t C
zC0 � @zC=@t D @

�
zC � zC0� =@t etc., we can construct transport equations for LT

and LC . Not surprisingly, we have to introduce yet another form of the structural
similarity hypothesis, this time assuming that we can approximate

zC
i z�0

j D dzC � z�0I zC0
i z�

j D ezC0 � z�;

and, again for simplicity, we assume that d D e D a. This yields the covariance
transport equation for LT as

@LT

@t
C U � rLT � VA � rLC C r � .U=2/LT C r � VAL

C

C 2

�

a � 1

4

�

r � ULD C 2aSu
xL

D D 0:

Since LC D EC�
C and EC D 0, the covariance equation for LT reduces to

@LT

@t
C U � rLT C 1

2
r � ULT C 2

�

a � 1

4

�

r � ULD C 2aLDSu
x D 0: (6.29)

Zank et al. (1996) argued that the velocity and magnetic field fluctuations possess
equal areas under their respective correlation functions, from which we can infer
that �D D 0. This is a somewhat severe restriction but it maintains some tractability
in the turbulence model. By using �D D 0 and recalling that LT D ET �

T D
.rA C 1/Eb�

T and identifying �T with 2� yields (Exercise)

@�

@t
C U � r�C

�

2aSu
x �

�

2a � 1

2

��

Hd� D E
1=2

b

2
� S�

2Eb
: (6.30)

With the exception of identifying the source terms, this completes the derivation of
the turbulence transport model. Under the assumptions listed above, the transport of
the energy density in magnetic field fluctuations Eb is governed by the Eqs. (6.27)
and (6.30). These equations describe the convection of magnetic energy and its
evolution in an inhomogeneous flow, while experiencing the dissipation of magnetic
energy into the plasma, as well as driving by sources.

Zank et al. (1996) considered three possible sources of turbulence in the solar
wind; driving by stream-stream interactions, interplanetary shock waves, or in the
outer heliosphere by ionization of interstellar neutrals. They solved the steady-state
spherically symmetric form of the transport equations (6.27) and (6.30),

U
@Eb

@r
C U

r
Eb � � U

r
Eb D �Eb

�
C S I
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Fig. 6.1 Semilog plot of b2=b20 for the combined Voyager 1 and 2 and Pioneer 11 data set
(normalized to 1 AU) and four theoretical models as a function of heliocentric distance. The solid
curve corresponds to a WKB solution, the dotted curve to a WKB solution with pickup ion driving,
the dashed curve to turbulence dissipative solution with driving by stream interactions, and the
dashed-dotted curve to a turbulence dissipative solution with driving by stream interactions and
pickup ions. The triangles and diamonds denote Voyager 1 and 2 1-h data respectively and the
squares identify the Pioneer 15 min data. A moderate driving parameter of � �0:2 was used (Zank
et al. 1996)

U
@�

@r
C �

U

r
� D E

1=2

b

2
� S

2Eb
�;

where 0 � � � 1 expresses the mixing and is treated parametrically. Solutions of
these equations were obtained numerically and compared to observations. Illustrated
in Fig. 6.1 are four theoretical models. The solid line depicts the well-known WKB
solution, the dotted line corresponds to a WKB solution with pickup ion driving,
the dashed line illustrates the dissipative turbulence solution with stream-driving
only, and finally, the dashed-dotted line depicts the dissipative turbulence model
with driving by both streams and pickup ions. It is apparent that there is little to
choose between the four solutions at heliocentric distances within some 6–10 AU.
All appear to describe the overplotted data adequately. From �7 AU outward,
the undriven WKB model and the stream-driving-only model underestimate the
observed power in magnetic field fluctuations, and the pickup ion driven WKB
model is clearly inappropriate. The choice of reasonable parameters yields a
dissipative, stream- and pickup ion driven model that is in good agreement with
observations from 1 to 40 AU. Other authors have applied this model successfully to
distances as large as 80 AU and in different latitudinal regions of the heliosphere.11

11See e.g., Smith et al. (2001).
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Exercises

1. Complete the derivation of the correlation length equation (6.30).
2. Integrate the steady-state spherically symmetric form of the transport equa-

tions (6.27) and (6.30),

U
@Eb

@r
C U

r
Eb � � U

r
Eb D �Eb

�
I

U
@�

@r
C �

U

r
� D E

1=2

b

2
;

analytically if Eb.r D R0/ D Eb0 and �.r D R0/ D �0. Hence show that
asymptotically, in the limit of no mixing � D 0 (which is appropriate for either
2D or slab turbulence), one obtains the estimates

b2=b20 � .R0=r/
3:5; �=�0 � .r=R0/

1=4:

This model corresponds to Kolmogorov/von Karman turbulence in an expanding
medium. Show that in the opposite limit of strong turbulence (� D 1), the
solutions reduce asymptotically to

b2=b20 � .R0=r/
4; �=�0 � constant:

This solution describes Taylor turbulence in a non-expansive medium.
3. Determine the general solution to the stream-driven steady-state spherically

symmetric form of the transport equations (6.27) and (6.30),

U
@Eb

@r
C U

r
Eb � � U

r
Eb D �Eb

�
C Csh

U

r
EbI

U
@�

@r
C �

U

r
� D E

1=2

b

2
� Csh U

2r
�;

analytically if Eb.r D R0/ D Eb0 and �.r D R0/ D �0. Hence find asymptotic
solutions for weak and strong mixing.
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electron-electron, 155
electron-proton, 142, 143, 155
electron-proton collision frequency, 145,

154
energetic ion collision operator, 152
energetic ion-electron, 150
energetic ions-protons, 151
energetic particles, 150
fast ions, 150
Fokker-Planck equation, 134
Fokker-Planck operator, 122, 139–141
frictional force, 128, 134
fundamental collision frequency, 149
Galilean invariance, 123
H-theorem, 85
hard sphere scattering, 76
Landau operator, 141
local thermodynamical equilibrium, 123,

155
logarithmic integral cut-off, 139
Lorentz operator, 144
Markov process, 129
Markovian, 133
Maxwell-Boltzmann distribution, 86, 134
Maxwellian background, 145
molecular chaos, 75
momentum and energy transfer, 125
multiple species, 135
particles, 60, 127, 135
proton-electron, 152, 168
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collisions (cont.)
proton-proton, 155
relaxation time operator, 91, 92, 162
Rosenbluth potentials, 140, 141, 147
shell distribution, 143, 147
streaming scattering frequency, 148
transition matrix, 75
velocity diffusion frequency, 147

conservation
angular momentum, 80
charge, 88, 167
collision operator, 126, 142
energy, 76, 80, 82, 84, 89, 90, 124, 170
entropy, 127, 171
frozen-in flux theorem, 171
hydrodynamics, 90
magnetic flux, 171
magnetohydrodynamics, 124, 169, 171
mass, 84, 88, 124, 167
MHD shocks, 175
momentum, 76, 82, 84, 88, 124, 169
Rankine-Hugoniot, 104, 175
weak solutions, 102, 104, 171

contact discontinuity, 88, 105
correlation tensor, 232
correlation tensor

axisymmetric, 233
dynamical, 216, 239
Fourier transform, 215
isotropic, 218
magnetic, 215
magnetostatic, 216
slab, 221
stationary, 239
two-component, 219
two-D, 224
wave number space, 216

Corrsin’s independence hypothesis, 239
Coulomb logarithm, 139
covariance, 27, 36, 41, 64–66, 69, 276, 277
covariance

decay, 66
joint, 65, 66, 69

cross-spectral density, 66

D
Debye radius, 139
differential form, 102
diffusion

ballistic or free streaming, 235
Kubo form, 237
Markovian, 235
perpendicular, 240

regular, 235
running coefficient, 237
subdiffusion, 235
superdiffusion, 235

distribution function, 15, 19, 21, 47, 62, 71–73,
127, 142, 228

distribution function
anisotropic, 118
binomial, 48
bispherical, 2
continuous, 16, 19
cosmic rays, 250, 253, 256–258
delta function, 142
discrete, 15, 19
electron, 149, 152, 153, 156, 159
energetic particles, 150, 152, 186, 204, 250,

252, 253, 256, 257
Gaussian, 53, 61, 239
Gaussian, normal, 57
gyrophase averaged, 111, 186, 187, 192,

193, 211, 214, 230
gyrotropic, 144
hemispherical, 192
invariance of phase space volume, 72
Iroshnikov-Kraichnan, 267
isotropic, 111, 146, 152, 191, 201, 214, 238,

240, 251, 252
Kolmogorov, 261, 267
Lorentz, 68, 69
Lorentz invariance, 72, 205
Maxwell-Boltzmann, 57, 60, 82, 86, 87, 93,

134, 143, 145, 147, 162, 163, 165,
166

mixed coordinates, 187
moments, 23, 29–31, 64, 65, 84, 91, 92, 94,

121–124, 127, 130, 241, 272, 273
multiple species, 135
multiple variables, 22
normal, 53
Poisson, 51
polynomial expansion, 158
power law, 202, 253, 267
shell, 2
turbulent fluctuations, 261
velocity, 111, 121
velocity shifted, 123
wave number, 261

Dreicer field, 149

E
Elsässer variables, 270–272, 274
ensemble average, 63–65, 215, 228–231,

239
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ergodic, 63
Euler equations, 90, 93, 94, 98, 104
expectation, 23, 24, 27–30, 37, 38, 40, 43, 62,

65, 87, 97, 133, 139, 140, 146
expectation

conditional, 38, 40

F
field lines, 173
flux surface, 173

G
galactic cosmic rays

Compton-Getting, 258
knee, 254
modulation, 257
spectrum, 253, 254

Gibbs ensemble, 62
gyrofrequency, 155
gyroradius, 155
gyroviscosity, 164

H
H-theorem, 82, 85, 86
heat flux

vector, 89, 94, 97
heat flux tensor, 125, 165
heat flux vector, 96, 123, 125, 161–163
heat flux vector

diamagnetic, 160, 165
electron, 159, 160
perpendicular, 161
proton, 159

heliosphere, 1
homogeneous

random function, 66
turbulence, 216–218, 221, 239, 265, 276

I
integral form, 102
internal energy, 89, 90, 104, 106
internal energy

cosmic rays, 240
energetic particles, 240, 242

K
kurtosis, 33

L
Larmor radius, 155
Liouville’s theorem, 63, 129
Lorentz force, 126, 189, 207
Lorentz transformations, 204

M
magnetic helicity, 174
magnetic surface, 173
Maxwell’s equations, 168
mean value, 25, 30, 49, 51, 54, 123
mode, 31
moment generating function, 28–30, 36, 37,

43, 45, 49, 51, 256
most probable value, 31
multiple scales method, 92, 108, 244, 270

N
Navier-Stokes equations, 90, 92, 97, 106–108,

263
noise, 68

P
pickup ions, 1
plasma beta, 181
power spectral density, 66
Prandtl number, 107, 109
pressure

Chapman-Enskog expansion, 96
cosmic rays, 242
energetic particles, 242
evolution, 170
isotropic, 94, 124, 163
MHD, 168
scalar, 94, 124, 163
tensor, 88, 90, 123, 162
trace, 90

probability density function, 15, 16, 62, 127
probability density function

conditional, 37, 38, 40, 43, 131
joint, 23, 27, 34, 36, 40, 42, 43, 60, 65, 66,

75, 239
joint conditional, 40
marginal, 35–37, 40, 42, 43, 45, 46, 75

probability set function, 7, 8, 10, 12, 13, 15, 16,
19, 21, 22, 33

probability set function
conditional, 33
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R
random variable, 11–13, 15
random variable

continuous, 11, 19
discrete, 11, 19
multiple variables, 16, 22

rate-of-strain tensor, 90, 96, 157, 160
reductive perturbation method, 244
Reynolds number, 107, 263
rotation tensor, 190
runaway electrons, 149

S
sample space, 7, 8, 10, 11, 13, 33
scalar potential, 174
scattering

Alfvén waves, 186, 204, 214
BGK scattering operator, 91
collisional, 144
collisional , 134
collisionless scattering operator, 186
cosmic rays, 256, 257
Coulomb scattering cross section, 81
differential cross section, 76, 81
diffusion, 227
diffusive shock acceleration, 253
electron-proton, 144
hard sphere, 76, 78
impact parameter, 78
low frequency turbulence, 185
Markov process, 127
non-resonant, 185
parallel scattering, 147, 214
pitch angle, 111, 127, 152, 214, 227, 232,

238
pitch angle diffusion operator, 192
plasma fluctuations, 185
quasi-linear, 226
resonant, 185, 204, 235
Rutherford scattering cross section, 81
scattering cross section, 76
scattering frame, 186, 204
scattering tensor, 226
slab turbulence, 234
time scales, 129
turbulence, 202, 215, 218
wave frame, 204

shear tensor, 190
shock waves, 88, 105
shock waves

Alfvénic shock, 180
breaking time, 101
Burgers’ equation, 109

characteristics, 105
co-planarity, 175
cosmic ray mediated shocks, 244
diffusive shock acceleration, 250, 252–254
dissipation, 109, 110, 247
energetic particle mediated shocks, 244
entropy, 177
fast mode, 180, 182
gas dynamic Hugoniot, 105
gas dynamics, 104
Hugoniot equation, 105
intermediate shock, 182
inviscid Burgers’ equation, 104
jump conditions, 103, 104
MHD jump conditions, 175
MHD Rankine-Hugoniot conditions, 175
MHD shock waves, 175
multiple shocks, 257
Navier-Stokes equations, 106
parallel, 180
perpendicular, 180
quasi-parallel, 180
quasi-perpendicular, 180
Rankine-Hugoniot conditions, 103, 104
shock adiabatic, 178, 179
shock normal, 178
shock polar relation, 179, 180, 184
slow mode, 180, 182
switch-off shock, 182
switch-on shock, 182
turbulence, 262, 277
weak shocks, 98, 108, 179, 180, 244

Sirovich method, 115
skewness, 32
slip line, 105
Smoluchowsky equation, 131
solar energetic particles, 236, 254
sound speed

acoustic, 108, 109
acoustic Mach number, 182
Alfvén, 180, 182
fast, 180, 182, 244, 247
intermediate, 180, 182
magnetosonic, 169, 179
slow, 180, 182, 244, 247
acoustic, 91

spectrum
bendover scale, 220, 226
co-spectrum, 66, 69
correlation length, 220, 226
cosmic rays, 250, 253, 254
decorrelation length, 226
discrete, 117
dissipation range, 220, 264
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energetic particles, 250, 253–255, 257
energy range, 220, 264
frequency, 67
inertial range, 220, 264, 267
Iroshnikov-Kraichnan, 266, 267
Kolmogorov, 220, 264, 266, 267
magnetic fluctuations, 220
minimum wave number, 226
power density, 67, 68
quadrature, 66, 69
slab turbulence, 220, 222
turbulence, 218
two-D turbulence, 220, 224
wave number, 67, 219, 220

spherical coordinates, 77, 144, 187, 206, 211,
229, 231

stochastic in dependence, 42
stochastic independence, 43–46, 48, 75
stress tensor

hydrodynamics, 88
Maxwell, 241

T
transport

collisional, 135
collisional coefficients, 135
collisional plasma, 155
collisionless plasma, 185
collisions, 155
cosmic ray diffusion tensor, 202
diamagnetic flows, 161
diffusion coefficients, 133, 134, 147, 201,

227, 234
Elsässer variables, 271
energy, 125, 161
focusing length, 203
heat, 164
MHD turbulence, 261, 267
momentum, 160, 161
parallel diffusion, 230–232
perpendicular B, 161
perpendicular diffusion, 235, 240
pitch angle diffusion, 192, 198
spatial diffusion, 227, 235
spatial diffusion tensor, 202, 203
Taylor-Green-Kubo diffusion coefficient,

236, 237
transport equation

advective-diffusive equation, 192, 202, 203,
214

Boltzmann, 71, 76, 111
Chapman-Kolmogorov, 227
collisional plasma, 155

collisionless plasma, 185, 234
conservation form for MHD, 171
convective-diffusive equation, 202, 214
convective-diffusive transport equation,

214
correlation lengths, 277
cosmic ray, 191, 240, 252, 257
cosmic ray modulation, 257
cosmic ray transport equation, 214
current, 167
diffusion, 110
diffusive shock acceleration, 252, 254
dissipation, 275
energetic particle, 191
energetic particles, 240, 252
energy conservation, 170
entropy, 171
focussed transport, 186, 190, 191, 193, 200,

204, 214
Fokker-Planck, 111, 227, 234, 235
gyrophase averaged, 186, 190, 193, 200,

204, 211, 214
Hall term, 168
heat, 165
Legendre polynomial expansion, 193, 200
magnetic energy density, 272, 277
magnetic field lines, 173
magnetic flux, 171
magnetic helicity, 174
magnetohydrodynamics, 166
mass conservation, 169
mean field, 228
MHD, 166, 168, 171
MHD turbulence, 261, 267, 271, 273
MHD, ideal, 168, 171
momentum, 166
momentum conservation, 169
non-relativisitic, 190
non-relativistic, 190
non-relativistic particles, 186, 190, 191
Nonlinear Guiding Center - NLGC, 240
number density, 166
Ohm’s law, 167
quasi-linear, 226, 227
relativistic particles, 204, 214
telegrapher, 110, 112, 113
total energy density, 274
turbulence, 261
two-fluid, 158, 166, 242, 244
Vlasov equation, 204
WKB, 274, 275

turbulence
Alfvén ratio, 273
Alfvénic time scale, 266
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turbulence (cont.)
axisymmetric, 218, 234
correlation length, 220, 276
cross helicity, 273
decorrelation, 220
eddy turn-over time , 266
energy difference, 273
fluid, 64
Gaussian, 61
homogeneous, 216, 217
incompressible MHD, 269
inhomogeneous flow, 261
isotropic, 217
Kolmogorov, 220, 263
magnetic, 185, 217
mean field decomposition, 267
MHD, 185
moments, 272
one-point closure, 265, 275
perpendicular, 185, 219
residual energy, 273
slab, 185, 219, 221, 234
sources, 262, 277

spectrum, 220
stationary, 216
structural similarity hypothesis, 273
total energy density, 273, 274
transport, 261, 274
triple correlation time, 266
two-component model, 219, 229
two-D, 185, 219, 224
WKB models, 262

V
variance, 25, 26, 49, 51, 54, 64, 235, 236
variance

conditional, 38
vector potential, 173
viscosity tensor, 124, 160, 162, 164

W
weak solution, 101, 102, 104, 171
white noise, 68
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